ST. THOMAS COLLEGE (AUTONOMOUS) THRISSUR

Affiliated to UNIVERSITY OF CALICUT

SYLLABUS FOR DEGREE OF **B.Sc. MATHEMATICS HONOURS** (MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS & MODEL QUESTION PAPERS w.e.f. 2024 admission onwards

St. Thomas College Four Year Under Graduate Programme [STCFYUGP]

Board of Studies in Mathematics St. Thomas College (Autonomous), Thrissur

1	Dr. Viji M	Associate Professor and Head,
-	(Chairperson)	Department of Mathematics,
	()	St. Thomas College (Autonomous),
		Thrissur
2	Dr. Saju M I	Associate Professor,
-		Department of Mathematics,
		St. Thomas College (Autonomous),
		Thrissur
3.	Dr. Alphonsa Mathew	Associate Professor,
		Department of Mathematics ,
		St. Thomas College (Autonomous),
		Thrissur
4	Mr. Antony John E F	Assistant Professor,
		Department of Mathematics,
		St. Thomas College (Autonomous),
		Thrissur
5	Dr. Sabu A S	Assistant Professor,
		Department of Mathematics,
		St. Thomas College (Autonomous),
		Thrissur
6	Dr. Julie Andrews	Assistant Professor,
		Department of Mathematics,
		St. Thomas College (Autonomous),
		Thrissur
7	Mr. Renjith Varghese	Assistant Professor,
		Department of Mathematics,
		St. Thomas College (Autonomous),
		Thrissur
8	Mr. Pratheesh George	Assistant Professor,
		Department of Mathematics,
		St. Thomas College (Autonomous),
		Thrissur
9	Mr. Ashbin Mathew	Assistant Professor,
		Department of Mathematics,
		St. Thomas College (Autonomous),
		Thrissur
10	Mr. Mathew Thomas	Assistant Professor,
		Department of Mathematics,
		St. Thomas College (Autonomous),
		Thrissur
11	Dr. Didimos K V	Assistant Professor,
		Department of Mathematics,
		SH College (Autonomous) Kochi

12	Dr. Jaison Jacob	Assistant Professor,
		Department of Mathematics,
		St. Aloysius College, Elthuruthu,
		Thrissur
13	Mr. Vishnudas V.	Assistant Education Director,
		Growing Stars Infotech Pvt Ltd,
		Ernakulam
14	Mr. Joseph Stalin	Senior Technical Specialist,
		Cyber Security,
		Elektrobit India Pvt. Ltd.,
		Bangaluru.
15	Dr. Saji Mathew	Associate Professor,
	-	Department of Mathematics,
		St. Joseph's College (Autonomous),
		Devagiri, Calicut

CONTENTS

Scheme of Syllabus	1
Evaluation Scheme	31
Major Core Courses	
First Year	45
Second Year	53
Third Year	78
Fourth Year	103
Elective Courses	
Specialization in Mathematical Computing	136
Specialization in Data Science	151
Other Elective Courses – Third Year	167
Elective Courses – Fourth Year	182
Research Methodology	211
Multi-Disciplinary Courses	
First Semester	217
Second Semester	222
Skill Enhancement Courses	
Double Major	232
For Pathways 1 – 4	238
For Pathways 1 – 5	242
Value Added Courses	
Third Semester	251
Fourth Semester	259
Vocational Minors	
Introduction to AI	267
Introduction to Data Science	289
Minor Courses	
Minor Group – I	313
Minor Group – II	325
Minor Group – III	337
Minor Group – IV	349
Minor Group – V	361
Minor Group – VI	370
Online Equivalent Courses	380
Model Question Papers	383

B.Sc. MATHEMATICS HONOURS

(MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SCHEME OF SYLLABUS

PROGRAMME OUTCOMES (PO):

At the end of the Honours programme at St. Thomas College (Autonomous), Thrissur a student would:

PO 1	Knowledge Acquisition:
	Demonstrate a profound understanding of knowledge trends and their impact on the choser
	discipline of study.
PO 2	Communication, Collaboration, Inclusiveness, and Leadership:
	Exhibit effective communication skills, fostering teamwork to demonstrate transformative
	leadership, exercising inclusivity.
PO 3	Professional Skills:
	Apply professional skills to navigate diverse career paths with confidence and adaptability
PO 4	Digital Intelligence:
	Utilize varied digital and technological tools proficiently to understand and interact with th
	digital world, effectively processing complex information.
PO 5	Scientific Awareness and Critical Thinking:
	Solve problems innovatively and mediate effectively by applying scientific understandin
	and critical thinking to address challenges and advance sustainable solutions.
PO 6	Human Values, Professional Ethics, and Societal and Environmental Responsibility:
	Lead responsibly with a steadfast commitment to human values, ethical conduct, an
	dedication to the well-being of society and the environment.
PO 7	Research, Innovation, and Entrepreneurship:
	Conduct research and lead entrepreneurial initiatives, forging collaborative partnership
	with industry, academia, and communities to develop enduring solutions for local, regiona
	and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO):

At the end of the B.Sc. Mathematics Honours Programme at St. Thomas College (Autonomous), Thrissur, a student would:

	Programme Specific Outcome					
	(Major)					
D CO 4						
PSO 1	Advanced Mathematical Knowledge:					
	Demonstrate a high level of mathematical rigor and logical reasoning by					
	understanding core mathematical abstract concepts/theories					
PSO 2	Modelling and Problem-Solving Skills:					
	Apply mathematical techniques to solve complex problem situations					
	across various domains and interpret the result, demonstrating critical					
	thinking and analytical skills.					
PSO3	Computational Proficiency:					
	Apply mathematical understanding to solve problems and explicitly work					
	out step by step either by self or by software based computational tools.					
PSO4	Research Aptitude:					
	Analyse mathematical abstract ideas effectively and present/communicate					
	mathematical arguments and solutions in a clear and coherent manner					
	leading to research in Mathematics					
	Programme Specific Outcome					
	(Minor)					
2005						
PSO5	Mathematics Proficiency:					
	Demonstrate a strong understanding of mathematical principles and					
	problem solving					
PSO6	Interdisciplinary Integration:					
	Integrate Mathematics with relevant disciplines to develop more holistic					
	approaches to solve problems, leading to innovative solutions and					
	advancements in various fields.					

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS

Sl. No.	Academic Pathway		Minor/ Other Disciplin es ourse has redits	Foundation Courses AEC: 4 MDC: 3 SEC: 3 VAC: 3 Each course has 3 credits	Intern- ship 2	Total Credits	Example
	Single Major	08	24	59	2	155	Major: Mathematics
	(A)	(17	(6	(13			+
		courses)	courses)	courses)			six courses in
							different
							disciplines in
							different
2	Major (A)	68	12 + 12	39	2	133	combinations Major:
2	Major (A) with	08	12 + 12	39	2	155	Major: Mathematics
	Multiple	(17	(3 + 3 = 6)	(13			+
	Discipline	courses)	courses)	courses)			Statistics and
	s (B, C)	,	,				Computer
							Science
3	Major (A)	68	24	39	2	133	Major:
	with	(17					Mathematics
	Minor (B)	courses)	(6	(13			Minor:
			courses)	courses)			Physics
4	Major (A)	68	24	39	2	133	Major:
	with	(17	17	(12			Mathematics
	Vocational	(17	(6	(13			Vocational Minor Data
	Minor (B)	courses)	courses)	courses)			Minor: Data Analysis
5	Double	A: 48	_	12 + 9+9	2	133	7 mary 515
	Major	11. 10		+9	2	133	
				-			

IN THE THREE-YEAR PROGRAMME IN STCFYUGP

(A, B)	(12 courses) B: 44 (11 courses)	The 24 credits in the Minor stream are distributed between the two Majors. 2 MDC, 2 SEC, 2 VAC and the Internship should be in Major A. Total credits in Major A should be 48 + 20 = 68 (nearly 50% of 133) 1 MDC, 1 SEC and 1 VAC should be in Major B. Total credits in		Mathematics and Physics double major
		Major B should be $44 + 9 = 53$ (40% of 133)		
Exit	with UG D	egree / Proceed to Fourth Year with	133 Credi	ts

B.Sc. MATHEMATICS HONOURS PROGRAMME

COURSE STRUCTURE

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semester	Course Code	Course Title	Total Hours	Hours/ Week	Credits		Marks	
Seme						Internal	External	Total
1	MAT1CJ101/ MAT1MN100	Core Course 1 in Major – Differential Calculus	60	4	4	30	70	100
		Minor Course 1	60/ 75	4/5	4	30	70	100
		Minor Course 2	60/ 75	4/5	4	30	70	100
	ENG1FA101 (2)	Ability Enhancement	30+30	2+2	2+1	25	50	75
		Course 1– English	(T+P)	(T+P)	(T+P)			
		(with Theory T & Practicum P)						
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 1 – Other than Major	45	3	3	25	50	75
		Total		22/24	21			525
2	MAT2CJ101/ MAT2MN100	Core Course 2 in Major – Integral Calculus	60	4	4	30	70	100
		Minor Course 3	60/ 75	4/5	4	30	70	100
		Minor Course 4	60/ 75	4/5	4	30	70	100
	ENG2FA103 (2)	Ability Enhancement Course 3– English	30+30	2+2	2+1	25	50	75

		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 2 – Other than Major	45	3	3	25	50	75
		Total		22/24	21			525
3	MAT3CJ201	Core Course 3 in Major– Multivariable Calculus (with Theory T & Practicum P)	45+30 (T+P)	3+2 (T+P)	3+1 (T+P)	30	70	100
	MAT3CJ202/ MAT3MN200	Core Course 4 in Major– Matrix Algebra	60	4	4	30	70	100
		Minor Course 5	60/ 75	4/5	4	30	70	100
		Minor Course 6	60/ 75	4/5	4	30	70	100
		Multi-Disciplinary Course 3 – Kerala Knowledge System	45	3	3	25	50	75
	ENG3FV108 (2)	Value-Added Course 1 – English	45	3	3	25	50	75
		Total		23/25	22			550
4	MAT4CJ203	Core Course 5 in Major –Real Analysis I	45+30	3+2	3+1	30	70	100
	MAT4CJ204	Core Course 6 in Major – Basic Linear Algebra	60	4	4	30	70	100
	MAT4CJ205	Core Course 7 in Major – Fundamentals of Python and SageMath (with Theory T & Practical P)	45+30 (T+P)	3+2 (T+P)	3+1 (T+P)	30	70	100

	ENG4FV109 (2)	Value-Added Course 2 – English	45	3	3	25	50	75
		Value-Added Course 3 – Additional Language	45	3	3	25	50	75
	ENG4FS111(2)	Skill Enhancement Course 1 – English	30+30	2+2	2+1	25	50	75
		Total		24	21			525
5	MAT5CJ301	Core Course 8 in Major –Real Analysis II	45+30	3+2	3+1	30	70	100
	MAT5CJ302	Core Course 9 in Major –Abstract Algebra I	60	4	4	30	70	100
	MAT5CJ303	Core Course 10 in Major – Complex Analysis I	60	4	4	30	70	100
		Elective Course 1 in Major	60	4	4	30	70	100
		Elective Course 2 in Major	60	4	4	30	70	100
		Skill Enhancement Course 2	45	3	3	25	50	75
		Total		24	23			575
6	MAT6CJ304/ MAT8MN304	Core Course 11 in Major – Complex Analysis II (To choose this course as a minor from other department, familiarity with the necessary contents of MAT5CJ303 is desirable as a prerequisite)	60	4	4	30	70	100
	MAT6CJ305/ MAT8MN305	Core Course 12 in Major – Elementary Number Theory	60	4	4	30	70	100

	MAT6CJ306/ MAT8MN306	Core Course 13 in Major – Methods of Differential Equations	60	4	4	30	70	100
		Elective Course 3 in Major	60	4	4	30	70	100
		Elective Course 4 in Major	60	4	4	30	70	100
	MAT6FS113 (1) <i>or</i> MAT6FS113 (2)	Skill Enhancement Course 3 – Data Science with Python <i>or</i> Scientific Principles & Practice	45	3	3	25	50	75
	MAT6CJ349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		23	25			625
Total C	Credits for Three	e Years			133			3325
7	MAT7CJ401	Core Course 14 in Major – Mathematical Analysis	45+30	3+2	3+1	30	70	100
	MAT7CJ402	Core Course 15 in Major –General Topology	45+30	3+2	3+1	30	70	100
	MAT7CJ403	Core Course 16 in Major – Abstract Algebra II	45+30	3+2	3+1	30	70	100
	MAT7CJ404	Core Course 17 in Major – Linear Algebra	45+30	3+2	3+1	30	70	100
	MAT7CJ405	Core Course 18 in Major – Discrete Mathematics	45+30	3+2	3+1	30	70	100
		Total		25	20			500
8	MAT8CJ406/ MAT8MN406	Core Course 19 in Major – Basic Measure Theory	45+30	3+2	3+1	30	70	100

MAT8CJ407 / MAT8MN407	Core Course 20 in Major – Number Theory	60	4	4	30	70	100
MAT8CJ408 / MAT8MN408	Core Course 21 in Major – Differential Equations	60	4	4	30	70	100
OR (instead of	Core Courses 19 to 21 in	Major)					1
MAT8CJ449	Project (in Honours programme)	360*	13*	12	90	210	300
OR (instead of	Core Courses 19 to 21 in	Major)					1
MAT8CJ499	Project (in Honours with Research programme)	360*	13*	12	90	210	300
	Elective Course 5 in Major / Minor Course 7	60	4	4	30	70	100
	Elective Course 6 in Major / Minor Course 8	60	4	4	30	70	100
	Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline	60	4	4	30	70	100
OR (instead of Programme)	Elective Course 7 in Majo	or, in th	ie case o	of Hono	urs with	Research	h
MAT8CJ489	Research Methodology in Mathematics	60	4	4	30	70	100
	Total		25	24			600
Total	Credits for Four Years	-	-	177			4423

^{*}

The teacher should have 13 hrs/week of engagement (the hours corresponding to the three core courses) in the guidance of the Project(s) in Honours programme and Honours with Research programme, while each student should have 24 hrs/week of engagement in the Project work. Total hours are given based on the student's engagement.

CREDIT DISTRIBUTION FOR PATHWAYS 1 – 4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

	4. Major	with Vocational	l Minor

Semester	Major Courses	Minor Courses	General Foundation Courses	Internship/ Project	Total
1	4	4 + 4	3+3+3	-	21
2	4	4 + 4	3+3+3	-	21
3	4 + 4	4 + 4	3 + 3	-	22
4	4 + 4 + 4	-	3+3+3	-	21
5	4 + 4 + 4 + 4 + 4 + 4	-	3	-	23
6	4 + 4 + 4 + 4 + 4 + 4	-	3	2	25
Total for Three Years	68	24	39	2	133
7	4 + 4 + 4 + 4 + 4 + 4	-	-	-	20
8	4 + 4 + 4	4 + 4 + 4	-	12*	24
	*	Instead of the	ee Major course	s	
Total for Four Years	88 + 12 = 100	36	39	2	177

DISTRIBUTION OF MAJOR COURSES IN Mathematics

FOR PATHWAYS 1-4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semester	Course Code	Course Title	Hours/ Week	Credits
1	MAT1CJ101 /MAT1MN100	Core Course 1 in Major – Differential Calculus	4	4
2	MAT2CJ101 /MAT2MN100	Core Course 2 in Major – Integral Calculus	4	4
3	MAT3CJ201	Core Course 3 in Major – Multivariable Calculus	5	4
	MAT3CJ202 /MAT3MN200	Core Course 4 in Major – Matrix Algebra	4	4
4	MAT4CJ203	Core Course 5 in Major – Real Analysis I	5	4
	MAT4CJ204	Core Course 6 in Major – Basic Linear Algebra	4	4
	MAT4CJ205	Core Course 7 in Major – Fundamentals of Python and SageMath (P)	5	4
5	MAT5CJ301	Core Course 8 in Major – Real Analysis II	5	4
	MAT5CJ302	Core Course 9 in Major – Abstract Algebra I	4	4
	MAT5CJ303	Core Course 10 in Major – Complex Analysis I	4	4
		Elective Course 1 in Major	4	4
		Elective Course 2 in Major	4	4
6	MAT6CJ304/ MAT8MN304	Core Course 11 in Major – Complex Analysis II	4	4

	MAT6CJ305 /MAT8MN305	Core Course 12 in Major – Elementary Number Theory	4	4
	MAT6CJ306 /MAT8MN306	Core Course 13 in Major – Methods of Differential Equations	4	4
		Elective Course 3 in Major	4	4
		Elective Course 4 in Major	4	4
	MAT6CJ349	Internship in Major	-	2
	Total	for the Three Years		70
	MAT7CJ401	Core Course 14 in Major - Mathematical Analysis	5	4
	MAT7CJ402	Core Course 15 in Major – General Topology	5	4
7	MAT7CJ403	Core Course 16 in Major – Abstract Algebra II	5	4
	MAT7CJ404	Core Course 17 in Major – Linear Algebra	5	4
	MAT7CJ405	Core Course 18 in Major – Discrete Mathematics	5	4
	MAT8CJ406/ MAT8MN406	Core Course 19 in Major – Basic Measure Theory	5	4
	MAT8CJ407 / MAT8MN407	Core Course 20 in Major – Number Theory	4	4
	MAT8CJ408 / MAT8MN408	Core Course 21 in Major – Differential Equations	4	4
		OR (instead of Core Courses 19 - 21 in	Major)	I
	MAT8CJ449	Project (in Honours programme)	13	12
	MAT8CJ499	Project (in Honours with Research programme)	13	12
		Elective Course 5 in Major	4	4
		Elective Course 6 in Major	4	4

		Elective Course 7 in Major	4	4
8	OR (inste	ad of Elective course 7 in Major, in Hono programme)	urs with Ro	esearch
	MAT8CJ489	Research Methodology in Mathematics	4	4
	Total	for the Four Years		114

ELECTIVE COURSES IN MATHEMATICS WITH SPECIALISATION

	Sl.	Course	Title			×			Marks	
Group No.	No	Code		Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1			MATHE	MA	TICA	L CO	MPUTI	NG		-
	1	MAT5EJ301 (1)	Mathematical Foundations of Computing	5	60	4	4	30	70	100
	2	MAT5EJ302 (1)	Data Structures and Algorithms	5	60	4	4	30	70	100
	3	MAT6EJ301 (1)	Numerical Analysis	6	60	4	4	30	70	100
	4	MAT6EJ302 (1)	Mathematics for Digital Images	6	60	4	4	30	70	100
2	1						D *			
2]		l'A SC	CIENC	£.*			
	1	MAT5EJ303 (2)	Convex Optimization	5	60	4	4	30	70	100
	2	MAT5EJ304 (2)	Machine Learning I	5	60	4	4	30	70	100
	3	MAT6EJ303 (2)	Applied Probability	6	60	4	4	30	70	100
	4	MAT6EJ304 (2)	Machine Learning II	6	60	4	4	30	70	100

Sl.	Course	Title	r	S		_		Marks	
No	Code		Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1	MAT5EJ305	Higher Algebra.	5	60	4	4	30	70	100
2	MAT5EJ306	Linear Programming	5	60	4	4	30	70	100
3	MAT6EJ305	Topology of Metric Spaces.	6	60	4	4	30	70	100
4	MAT6EJ306	Introduction to Fourier Analysis	6	60	4	4	30	70	100
5	MAT8EJ401	Advanced Topology	8	60	4	4	30	70	100
6	MAT8EJ402	Partial Differential Equations	8	60	4	4	30	70	100
7	MAT8EJ403	Rings and Modules	8	60	4	4	30	70	100
8	MAT8EJ404	Coding Theory	8	60	4	4	30	70	100
9	MAT8EJ405	Axiomatic Foundations of Mathematics	8	60	4	4	30	70	100
10	MAT8EJ406	Operations Research	8	60	4	4	30	70	100
11	MAT8EJ407	Cryptography	8	60	4	4	30	70	100
12	MAT8EJ408	Introduction to Fractals	8	60	4	4	30	70	100

ELECTIVE COURSES IN MATHEMATICS WITH NO SPECIALISATION

*All elective courses, with specialization or non-specialization may be considered as part of a single pool. You may choose any course from this pool based on semester code.

**

GROUPING OF MINOR COURSES IN MATHEMATICS

									Ma	rks
Group No.	S1. No.	Course Code	Title Tritle Hrs/ Week	Hrs/ Week	Credits	Internal	External	Total		
1			Minor Group I - Mathemat	tical M	lethod	s for Sc	ience			
	1	MAT1MN101	Calculus	1	60	4	4	30	70	100
	2	MAT2MN101	Differential Equations and Matrix Theory	2	60	4	4	30	70	100
	3	MAT3MN201	Calculus of Several Variables	3	60	4	4	30	70	100
2			Minor Group II – Foundations t	for Ma	thema	tical A _l	oplicat	tions		
	1	MAT1MN102	Calculus of a Single Variable	1	60	4	4	30	70	100
	2	MAT2MN102	Calculus and Matrix Algebra	2	60	4	4	30	70	100
	3	MAT3MN202	Differential Equations and Fourier Series	3	60	4	4	30	70	100
3			Minor Group III - Integrate	ed Mat	hemat	ical Me	ethods			
	1	MAT1MN103	Basic Calculus	1	60	4	4	30	70	100
	2	MAT2MN103	Analysis and Some Counting Principles	2	60	4	4	30	70	100
	3	MAT3MN203	Matrix Algebra and Vector Calculus	3	60	4	4	30	70	100

4			Minor Group IV – Foundatio	ons of I	Discre	te Math	nemati	cs		
	1	MAT1MN104	Mathematical Logic, Set Theory and Combinatorics	1	60	4	4	30	70	100
	2	MAT2MN104	Graph theory and Automata	2	60	4	4	30	70	100
	3	MAT3MN204 Boolean Algebra and System of Equations			60	4	4	30	70	100
		Minor Group V – Linear Algebra								
	1	MAT1MN105	Matrix Theory	1	60	4	4	30	70	100
	2	MAT2MN105	Vector Spaces and Linear Transformations	2	60	4	4	30	70	100
	3	MAT3MN205	Optimization Techniques	3	60	4	4	30	70	100
			Minor Group VI – Mat	hemat	ical Eo	conomie	cs			
	1	MAT1MN106	Principles of Micro Economics	1	60	4	4	30	70	100
	2	MAT2MN106	Optimization Techniques in Economics	2	60	4	4	30	70	100
	3	MAT3MN206 Applied Mathematics for Economic Analysis			60	4	4	30	70	100

* Students from other disciplines can choose up to one group (comprising three courses in total) from the first three options, as these groups share partially overlapping topics. Hence, they can either choose one group from groups 1, 2, and 3, and a second from groups 4, 5, and 6, or select two groups from groups 4, 5, and 6 altogether.

** Students from major mathematics can enroll only in minor group VI.

GROUPING OF VOCATIONAL MINOR COURSES IN MATHEMATICS

	VOCATIONAL MATHEMATICS – DATA ANALYTICS									
		le				~			Marks	
Group No.	SI. No.	Course Code	Title	Semester	Total Hrs	Hrs/Week	Credits	Internal	External	Total
1		Introduction to AI								
	1	MAT1VN 101	Python Programming	1	75	5	4	30	70	100
	2	MAT2VN 101	Linear Algebra for Machine Learning	2	75	5	4	30	70	100
	3	MAT3VN 201	Introduction to Machine Learning	3	75	5	4	30	70	100
	4	MAT8VN 401	Introduction to Artificial Intelligence	8	75	5	4	30	70	100
	T									
2			Intro	ductio	on to I	Data So	cience			
	1	MAT1VN 102	Statistics for Data Science	1	75	5	4	30	70	100
	2	MAT2VN 102	R Programming	2	75	5	4	30	70	100
	3	MAT3VN 202	Data Mining	3	75	5	4	30	70	100
	4	MAT8VN 402	Data Visualization	8	75	5	4	30	70	100

(i). Students in Single Major pathway can choose course/courses from any of the Minor/ Vocational Minor groups offered by a discipline other than their Major discipline.

(ii). Students in the Mathematics with Multiple Disciplines pathway who wish to choose a minor from within the same department are limited to selecting either the sixth minor group

(Mathematical Economics) or one of the vocational minor groups listed above as one of their multiple disciplines. For their second multiple discipline choice, students must select a Minor or Vocational Minor group offered by a discipline other than mathematics. If students opt for Mathematical Economics or another vocational group from mathematics, the title of that group will serve as their multiple discipline title.

(iii). Students in Major with Minor pathway can choose all the courses from any two Minor groups offered by a discipline other than their Major discipline. If the students from other major disciplines choose any two Minor groups in Mathematics as given above, then the title of the Minor will be Mathematics.

(iv). Students in Major with Vocational Minor pathway can choose all the courses from any two Vocational Minor groups offered by a discipline other than their Major discipline. If the students from other Major disciplines choose any two Vocational Minor groups in Mathematics as given above, then the title of the Vocational Minor will be Data Analytics.

	de	e		ek]	Marks	
Semester	Course Code	Course Title	Total Hours	Hours / Week	Credits	Internal	External	Total
1	MAT1FM105(1)	Multi-Disciplinary Course 1: Matrices and Basics of Probability theory	45	3	3	25	50	75
1	MAT1FM105(2)	Multi-Disciplinary Course 2: Mathematics for Competitive Examinations - Part I	45	3	3	25	50	75
2	MAT2FM106(1)	Multi-Disciplinary Course 3: Graph Theory and LPP	45	3	3	25	50	75
2	MAT2FM106(2)	Multi-Disciplinary Course 4: Mathematics for Competitive Examinations - Part II	45	3	3	25	50	75

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN MATHEMATICS

3	MAT3FV109(1)	Value-Added Course 1:	45	3	3	25	50	75
5		History of Mathematics	45	5	5	23	50	15
		Thistory of Wathematics						
2			45	2	2	25	50	75
3	MAT3FV109(2)	Value-Added Course 1:	45	3	3	25	50	75
		Computational Logic						
4	MAT4FV110(1)	Value-Added Course 2:	45	3	3	25	50	75
		Statistics and						
		Mathematics with R						
4	MAT4FV110(2)	Value-Added Course 2:	45	3	3	25	50	75
		The Mathematical						
		Practices of Medieval						
		Kerala						
5	MAT4FS111	Skill Enhancement	45	3	3	25	50	75
		Course 1 for Double						
		Major pathway:						
		Introduction to Python						
		and Scientific Computing						
6	MAT5FS112	Skill Enhancement	45	3	3	25	50	75
		Course 2: Mathematical						
		Type Setting System –						
		LaTeX						
		(for pathways $1 - 4$)						
7	MAT6FS113 (1)	Skill Enhancement						
		Course 2/3 : Data Science						
		with Python						
6	MAT6FS113 (2)	Skill Enhancement	45	3	3	25	50	75
		Course 2/3 : Scientific						
		Principles & Practice						

COURSE STRUCTURE FOR BATCH A1(B2)

IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Mathematics (Major A)

B1: 68 credits in Major B

A2: 53 credits in Mathematics (Major A)

B2: 53 credits in Major B

The combinations available to the students: (A1 & B2), (B1 & A2)

Note: Unless the	batch is specified,	the course is	for all t	the stud	ents of th	ne class

er	Course Code	Course Title	Total Hours	Hours/ Week	Credits		Marks	
Semester						Internal	External	Total
1	MAT1CJ 101 / MAT1MN100	Core Course 1 in Major Mathematics – Differential Calculus	60	4	4	30	70	100
		Core Course 1 in Major B	60/ 75	4/5	4	30	70	100
	MAT1CJ102 / MAT2CJ102 / MAT6CJ305*	Core Course 2 in Major Mathematics – Elementary Number Theory (for batch A1 only)	60	4	4	30	70	100
		Ability Enhancement Course 1 – English	30+30	2+2	2+1	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
	MAT1FM105(1) Or MAT1FM105(2)	Multi-Disciplinary Course 1 in Mathematics – Matrices and Basics of Probability theory <i>Or</i> Mathematics for Competitive Exams – Part I (for batch A1 only)	45	3	3	25	50	75

		Total		22/23	21			525
2	MAT2CJ101/ MAT2MN100	Core Course 3 in Major Mathematics – Integral Calculus	60	4	4	30	70	100
		Core Course 2 in Major B	60/75	4/5	4	30	70	100
		Core Course 3 in Major B – (for batch B2 only)	60/ 75	4/ 5	4	30	70	100
		Ability Enhancement Course 3 – English	30+30	2+2	2+1	25	50	75
		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
	MAT2FM106(1) Or MAT2FM106(2)	Multi-Disciplinary Course 2 in Mathematics – Graph Theory and LPP <i>Or</i> Mathematics for Competitive Exams – Part II	45	3	3	25	50	75
		Total		22 / 24	21			525
3	MAT3CJ201	Core Course 4 in Major Mathematics – Multivariable Calculus.	45+30	3+2	2+2	30	70	100
	MAT3CJ202/ MAT3MN200	Core Course 5 in Major Mathematics – Matrix Algebra	60	4	4	30	70	100
		Core Course 4 in Major B	60/ 75	4/5	4	30	70	100
		Core Course 5 in Major B	60/ 75	4/5	4	30	70	100

		Multi-Disciplinary Course 1 in B	45	3	3	25	50	75
	MAT3FV109(1) Or MAT3FV109(2)	Value-Added Course 1 in Mathematics – History of Mathematics <i>Or</i> Computational Logic (for batch A1 only)	45	3	3	25	50	75
		Total		23 / 25	22			550
4	MAT4CJ203	Core Course 6 in Major Mathematics – Real Analysis - I	45+30	3+2	2+2	30	70	100
		Core Course 6 in Major B	60/ 75	4/5	4	30	70	100
	MAT4CJ204	Core Course 7 in Major Mathematics - Basic Linear Algebra	60	4	4	30	70	100
	MAT4FV110(1) or MAT4FV110(2)	Value-Added Course 2 in Mathematics – Statistics and Mathematics with R <i>or</i> The Mathematical Practices of Medieval Kerala	45	3	3	25	50	75
		Value-Added Course 1 in B	45	3	3	25	50	75
	MAT4FS111	Skill Enhancement Course 1 in Mathematics – Introduction to Python and Scientific Computing (The contents of this course are part of MAT4CJ205, so classes can be shared if necessary)	45	3	3	25	50	75
		Total		23/24	21			525

5	MAT5CJ301	Core Course 8 in Major – Real Analysis II	45+30	3+2	2+2	30	70	100
		Core Course 7 in Major B –	60/ 75	4/5	4	30	70	100
	MAT5CJ302	Core Course 9 in Major Mathematics – Abstract Algebra I (for batch A1 only)	60	4	4	30	70	100
		Elective Course 1 in Major Mathematics	60	4	4	30	70	100
		Elective Course 1 in Major B	60	4	4	30	70	100
		Skill Enhancement Course 1 in B	45	3	3	25	50	75
		Total		24/25	23			575
6	MAT6CJ304/ MAT8MN304	Core Course 10 in Major Mathematics – Complex Analysis II (familiarity with necessary contents of MAT5CJ303 is desirable as a prerequisite for this course)	60	4	4	30	70	100
		Core Course 8 in Major B –	60/75	4/5	4	30	70	100
		Core Course 9 in Major B – (for batch B2 only)	60	4	4	30	70	100
		Elective Course 2 in Major Mathematics	60	4	4	30	70	100
		Elective Course 2 in Major B	60	4	4	30	70	100
	MAT6FS113(1) or MAT6FS113 (2)	Skill Enhancement Course 2 in Mathematics – Data Science with Python <i>or</i> Scientific Principles & Practice (for batch A1 only)	45	3	3	25	50	75

Internship in Major Mathematics (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
Total		24/25	25			625
Total Credits for Three Years			133			3325

CREDIT DISTRIBUTION FOR BATCH A1 (B2)

IN PATHWAY 5: DOUBLE MAJOR

Semester	Major Courses in Mathematics	General Foundation Courses in Mathematics	Internship/ Project in Mathematics	Majo Courses in B	General Foundation Courses in B	AEC	Tota 1
1	4 + 4	3	-	4	-	3 + 3	21
2	4	3	-	4 + 4	-	3 + 3	21
3	4 + 4	3	-	4 + 4	3	-	22
4	4 + 4	3 + 3	-	4	3	-	21
5	4 + 4 + 4	-	-	4 + 4	3	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total	48	18	2	44	9	12	133
for Three Years		68			53	12	133
	Major Courses in Mathematics	Minor Courses					
7	4 + 4 + 4 + 4 + 4 + 4	_			-	-	20

8	4 + 4 + 4	4 + 4 + 4	12^{*}		-	-	24
		* Instead	l of three Major	courses			
Total	88 + 12 = 100						177
for							
Four		12					
Years							

COURSE STRUCTURE FOR BATCH B1(A2)

IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Mathematics (Major A)

B1: 68 credits in Major B

A2: 53 credits in Mathematics (Major A)

B2: 53 credits in Major B

ľ	Course Code	Course Title	Total Hours	Hours/ Week	Credits		Marks	5
Semester						Internal	External	Total
1	MAT1CJ 101/ MAT1MN100	Core Course 1 in Major Mathematics – Differential Calculus	60	4	4	30	70	100
		Core Course 1 in Major B	60/ 75	4/ 5	4	30	70	100
		Core Course 2 in Major B (for batch B1 only)	60/75	4/5	4	30	70	100
		Ability Enhancement Course 1 – English	60	4	3	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 1 in B – (for batch B1 only)	45	3	3	25	50	75
		Total		22 / 24	21			525

Note: Unless the batch is specified, the course is for all the students of the class

2	MAT2CJ101/ MAT2MN100	Core Course 2 in Major Mathematics – Integral Calculus	60	4	4	30	70	100
		Core Course 3 in Major B –	60/ 75	4/5	4	30	70	100
	MAT2CJ102 / MAT1CJ102/ MAT6CJ305*	Core Course 3 in Major Mathematics – Elementary Number Theory (for batch A2 only).	60	4	4	30	70	100
		Ability Enhancement Course 3 – English	60	4	3	25	50	75
		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
	MAT2FM106(1) Or MAT2FM106(2)	Multi-Disciplinary Course 2 in Mathematics – Graph Theory and LPP <i>Or</i> Mathematics for Competitive Exams – Part II	45	3	3	25	50	75
		Total		24/25	21			525
3	MAT3CJ201	Core Course 4 in Major Mathematics – Multivariable Calculus	45+30	3+2	3+1	30	70	100
	MAT3CJ202/ MAT3MN200	Core Course 5 in Major Mathematics – Matrix Algebra	60	4	4	30	70	100
		Core Course 4 in Major B	60/75	4/5	4	30	70	100
		Core Course 5 in Major B	60/75	4/5	4	30	70	100
		Multi-Disciplinary Course 2 in B –	45	3	3	25	50	75
		Value-Added Course 1 in B – (for batch B1 only)	45	3	3	25	50	75

		Total		23/25	22			550
4	MAT4CJ203	Core Course 6 in Major Mathematics – Real Analysis - I	45+30	3+2	3+1	30	70	100
		Core Course 6 in Major B	60/ 75	4/5	4	30	70	100
		Core Course 7 in Major B – (for batch B1 only)	60/ 75	4/5	4	30	70	100
	MAT4FV110(1) <i>Or</i> MAT4FV110(2)	Value-Added Course 2 in Mathematics – Statistics and Mathematics with R <i>Or</i> The Mathematical Practices of Medieval Kerala	45	3	3	25	50	75
		Value-Added Course 2 in B –	45	3	3	25	50	75
	MAT4FS111	Skill Enhancement Course 1 in Mathematics – Introduction to Python and Scientific Computing (The contents of this course are part of MAT4CJ205, so classes can be shared if necessary)	45	4	3	25	50	75
		Total		22 / 24	21			525
5	MAT5CJ302	Core Course 7 in Major – Abstract Algebra I	60	4	4	30	70	100
		Core Course 8 in Major B –	60/ 75	4/5	4	30	70	100
		Core Course 9 in Major B – (for batch B1 only)	60	4	4	30	70	100
		Elective Course 1 in Major Mathematics	60	4	4	30	70	100
		Elective Course 1 in Major B	60	4	4	30	70	100
		Skill Enhancement Course 1 in B	45	3	3	25	50	75

		Total		24/25	23			575
6	MAT6CJ304 / MAT8MN304	5	60	4	4	30	70	100
		Core Course 10 in Major B –	60/ 75	4/5	4	30	70	100
	MAT6CJ306/ MAT8MN306	Core Course 9 in Major – Methods of Differential Equations (for batch B2 only)	60	4	4	30	70	100
		Elective Course 2 in Major Mathematics	60	4	4	30	70	100
		Elective Course 2 in Major B	60	4	4	30	70	100
		Skill Enhancement Course 2 in B – (for batch B1 only)	45	3	3	25	50	75
		Internship in Major B (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		24/25	25			625
		Total Credits for Three Years			133			3325

CREDIT DISTRIBUTION FOR BATCH B1(A2)

Semester	Major Courses in B	General Foundation Courses in B	Internship/ Project in B	Major Courses in Mathematics	General Foundation Courses in Mathematics	AEC	Total	
1	4 + 4	3	-	4	-	3 + 3	21	
2	4	-	-	4 + 4	3	3 + 3	21	
3	4 + 4	3 + 3	-	4 + 4	-	-	22	
4	4 + 4	3	-	4	3 + 3	-	21	
5	4 + 4 + 4	3	-	4 + 4	-	-	23	
6	4 + 4	3	2	4 + 4 + 4	-	-	25	
Total	48	18	2	44	9	12	133	
for Three Years		68		5	12	133		
	Major Courses in B	Minor Courses						
7	4 + 4 + 4 + 4 + 4 + 4 + 4	-			-	-	20	
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24	
* Instead of three Major courses								
Total for Four Years	88 + 12 = 100	12					177	

IN PATHWAY 5: DOUBLE MAJOR

EVALUATION SCHEME

1. The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks are from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation Course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks are from internal evaluation and 50 marks, from external evaluation.

2. The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit Practical/Practicum.

In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

In 4-credit courses with 3-credit theory and 1-credit Practical/Practicum components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for Practical/Practicum. The Practical/Practicum component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.

3. All the 3-credit courses (General Foundational Courses) in Mathematics are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

31

Sl. No.	Nature of the Course		Internal Evaluation in Marks (About 30% of the Total)		External Exam	Total Marks
			Open-ended Module /	On the other 4 Modules	on 4 Modules	
			Practical/Prac ticum		(Marks)	
1	4-credit course	only theory (5 modules)	10	20	70	100
2	4-credit course	Theory	20	10	70	100
		(4 modules) +				
		Practical/Pra cticum				
3	3-credit course	only theory (5 modules)	5	20	50	75

1. MAJOR AND MINOR COURSES

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

Sl.	Components of Internal Evaluation of	Internal Marks for the Theory Part				
No.	Theory Part of a	of a Major / Minor Course of 4-credits				
	Major / Minor Course	Theory Only		Theory + Practical/Practicum		
		4 Theory Modules	Open-ended Module	4 Theory Modules	Practical/Pra cticum	
1	Test paper/ Mid-semester Exam	10	4	5	-	
2	Seminar/ Viva/ Quiz	6	4	3	-	
3	Assignment	4	2	2	-	
Total		20	10	10	20*	
		30		30		

^{*} Refer the table in section 1.2 for the evaluation of Practical/Practicum component

1.2. EVALUATION OF PRACTICAL/PRACTICUM COMPONENT

The evaluation of Practical/Practicum component in Major and Minor courses is completely by internal evaluation.

- Continuous evaluation of Practical/Practicum by the teacher-in-charge shall carry a weightage of 50%.
- The end-semester Practical/Practicum examination and viva-voce, and the evaluation of Practical/Practicum records shall be conducted by the teacher in-charge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of Practical/Practicum courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who passed in continuous evaluation alone will be permitted to appear for the end-semester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and viva-voce of Practical/Practicum component shall be as given below:

Sl. No.	Evaluation of Practical/Practicum Component	Marks for	Weightage
		Practical/Pra	0 0
	of Credit-1 in a Major / Minor Course	cticum	
1	Continuous evaluation of Practical/Practicum/	10	50%
	exercise performed in Practical/Practicum classes		
	by the students		
2	End-semester examination and viva-voce to be	7	35%
	conducted by teacher-in-charge along with an		
	additional examiner arranged internally by the		
	Department Council		
3	Evaluation of the Practical/Practicum records	3	15%
	submitted for the end semester viva-voce		
	examination by the teacher-in-charge and		
	additional examiner		
	Total Marks	20	

1.3. EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the college based on 10-point grading system (refer section 5).

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

Duration	Туре	Total No. of	No. of	Marks for	Ceiling
		Questions	Questions to be	Each	of
			Answered	Question	Marks
2 Hours	Short Answer	10	8 - 10	3	24
	Paragraph/ Problem	8	6 – 8	6	36
	Essay	2	1	10	10
Total Marks					

2. INTERNSHIP

- All students should undergo Internship of 2-credits during the first six semesters in Research Institutions, Universities, Firms, Industry or Organizations, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.
- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.

A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship.

2.1. GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Mathematics or allied disciplines.
- 2. There should be minimum 60 hrs. of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship.
- 4. In B.Sc. Mathematics Honours programme, institute/ industry visit or study tour is a requirement for the completion of Internship. Visit to minimum one national research institute, research laboratory and place of scientific importance should be part of the study tour. A brief report of the study tour has to be submitted with photos and analysis.
- 5. The students should make regular and detailed entries in to a personal log book through the period of Internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical results, ideas, expressions, experimental conditions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 6. The log book and the typed report must be submitted at the end of the Internship.
- 7. The institution at which the Internship will be carried out should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

2.2. VALUATION OF INTERNSHIP

- The evaluation of Internship shall be done internally through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme.
- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Eval	Marks for Internship 2 Credits	Weightage	
1	Continuous evaluation of internship through	Acquisition of skill set	10	40%
2	interim presentations and reports by the committee	Interim Presentation and Viva-voce	5	
3	internally constituted by the Department Council	Punctuality and Log Book	5	
4	Report of Institute Visit/ S	tudy Tour	5	10%
5	End-semester viva-voce examination to be	Quality of the work	6	35%
6	conducted by the committee internally	Presentation of the work	5	
7	constituted by the Department Council	Viva-voce	6	
8	Evaluation of the day-to-d internship supervisor, and the end semester viva–voc committee internally const Council	8	15%	
		50		

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

- In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Project can be done in the same institution/ any other higher educational institution (HEI)/ research centre/ training centre.
- The Project in Honours programme can be a short research work or an extended internship or a skill-based training programme.
- A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

- Students who secure 75% marks and above (equivalently, CGPA 7.5 and above) cumulatively in the first six semesters are eligible to get selected to Honours with Research stream in the fourth year.
- A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is allowed for those belonging to SC/ ST/ OBC (non-creamy layer)/ Differently-Abled/ Economically Weaker Section (EWS)/ other categories of candidates as per the decision of the UGC from time to time.
- In Honours with Research programme, the student has to do a mandatory Research Project of 12-credits instead of three Core Courses in Major in semester 8.
- A faculty member of the College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.

The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project supervision, and other academic, research, and infrastructural facilities available.

• If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME

AND HONOURS WITH RESEARCH PROGRAMME

- 1. Project can be in Mathematics or allied disciplines.
- 2. Project should be done individually.
- 3. Project work can be of theoretical/ experimental /computational in nature.
- 4. There should be minimum 360 hrs. of engagement from the student in the Project work in Honours programme as well as in Honours with Research programme.
- 5. There should be minimum 13 hrs./week of engagement (the hours corresponding to the three core courses in Major in semester 8) from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme.
- 6. The various steps in project works are the following:
 - Wide review of a topic.
 - Investigation on a problem in a systematic way using appropriate techniques.
 - Systematic recording of the work.

• Reporting the results with interpretation in a standard documented form.

Presenting the results before the examiners.

- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical models and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
- 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.
- 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
- 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.
- 11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks are from internal evaluation and 210 marks, from external evaluation.
- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the college.
- The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

S1.	Components of Evaluation of Project	Marks for the Project	Weightage
		(Honours/	
No		Honours with	
		Research)	
1	Continuous evaluation of project work	90	30%
	through interim presentations and reports		
	by the committee internally constituted by		
	the Department Council		
2	End-semester viva-voce examination to	150	50%
	be conducted by the external examiner		
	appointed by the college.		
3	Evaluation of the day-to-day records and	60	20%
	project report submitted for the end-		
	semester viva-voce examination		
	conducted by the external examiner		
	Total Marks	300	

INTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research)
1	Skill in doing project work	30
2	Interim Presentation and Viva- Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
Total Marks		90

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/
		Honours with Research)
		12 credits
1	Content and relevance of the Project, Methodology, Quality of analysis, and Innovations of Research	50
2	Presentation of the Project	50
3	Project Report (typed copy), Log Book and References	60
4	Viva-Voce	50
	Total Marks	210

4. GENERAL FOUNDATION COURSES

All the General Foundation Courses (3-credits) in Mathematics are with only theory component.

Sl. No.	Components of Internal Evaluation of a General	Internal Marks of a General Foundation Course of 3-credits in Mathematics		
	Foundation Course in Mathematics	4 Theory Modules	Open-ended Module	
1	Test paper/ Mid-semester Exam	10	2	
2	Seminar/ Viva/ Quiz	6	2	
3	Assignment	4	1	
		20	5	
Total			25	

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the college based on 10-point grading system (refer section 5)

Duration	Туре	Total No. of	No. of	Marks for	Ceiling
		Questions	Questions to be	Each	of
			Answered	Question	Marks
1.5 Hours	Short Answer	10	8 - 10	2	16
	Paragraph/ Problem	5	4 – 5	6	24
	Essay	2	1	10	10
	•			Total Marks	50

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

5. LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10-point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.
- Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

Sl. No.	Percentage of Marks	Description	Letter Grade	Grade Point	Range of Grade	Class
110.	(Internal & External		Oracie	1 Onit	Points	
	Put Together)					
1	95% and above	Outstanding	0	10	9.50 - 10	First Class with
2	Above 85% and below 95%	Excellent	A+	9	8.50 – 9. 49	Distinction
3	75% to below 85%	Very Good	А	8	7.50 – 8.49	
4	65% to below 75%	Good	B+	7	6.50 - 7.49	
5	55% to below 65%	Above Average	В	6	5.50 - 6.49	First Class
6	45% to below 55%	Average	С	5	4.50 - 5.49	Second Class
7	35% to below 45% aggregate (internal and external put together) with a minimum of 30% in external valuation	Pass	P	4	3.50 - 4.49	Third Class
8	Below an aggregate of 35% or below 30% in external evaluation	Fail	F	0	0 – 3.49	Fail
9	Not attending the examination	Absent	Ab	0	0	Fail

LETTER GRADES AND GRADE POINTS

- When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.
- The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree Honours or UG Degree Honours with Research, as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA):

The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester,

i.e. SGPA (Si) =
$$\Sigma i$$
 (Ci x Gi) / Σi (Ci)

where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

Semester	Course	Credit	Letter	Grade	Credit Point
			Grade	point	(Credit x Grade)
Ι	Course 1	3	А	8	3 x 8 = 24
Ι	Course 2	4	B+	7	4 x 7 = 28
Ι	Course 3	3	В	6	3 x 6 = 18
Ι	Course 4	3	0	10	$3 \ge 10 = 30$
Ι	Course 5	3	С	5	3 x 5 = 15
Ι	Course 6	4	В	6	4 x 6 = 24
	Total	20			139
	SGPA				139/20 = 6.950

ILLUSTRATION – COMPUTATION OF SGPA

The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students.

CGPA for the three-year programme in STCFYUGP shall be calculated by the following formula.

CGPA for the four-year programme in STCFYUGP shall be calculated by the following formula.

- The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.
- Based on the above letter grades, grade points, SGPA and CGPA, the college shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

MAJOR CORE COURSES

Programme	B. Sc. Mather	natics Honours		
Course Code	MAT1CJ101	/ MAT1MN100		
Course Title	DIFFEREN	FIAL CALCULUS		
Type of Course	Major			
Semester	Ι			
Academic Level	100-199			
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours
		per week	per week	
	4	4	-	60
Pre-requisites		dge of Sets, Relations and F		
	School Level	Algebra and Real Numbers	(0-99 level).	
Course Summary	The course c	overs fundamental concept	s in calculus, i	ncluding functions,
	shifting of g	caphs, limits, continuity, di	ifferentiation, e	extreme values, the
	Mean Value	Theorem, graphing with der	rivatives, and lin	mits at infinity with
	asymptotes. S	tudents learn techniques for	evaluating limit	its, finding extrema,
	and graphing	functions using derivatives,	, preparing then	n for further studies
	in calculus an	d related fields.		

•

.

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse a function for its limits,	An	F	Internal
	continuity and differentiability and			Exam/Assignment
	evaluate limits and derivatives.			/Seminar/Viva/
				End Sem Exam
CO2	Apply first and second derivatives and	Ар	F	Internal
	related theorems to find extrema of			Exam/Assignment
	functions.			/Seminar/Viva/
				End Sem Exam
CO3	Sketch the graph of functions by	An	F	Internal
	analysing critical points and			Exam/Assignment
	asymptotes			/Seminar/Viva/
				End Sem Exam
	nber (R), Understand (U), Apply (Ap), An l Knowledge (F), Conceptual Knowledge (ge (M)	-		

Detailed Syllabus:

Textbook		lus and Analytic Geometry, 9 th Edition, George B. T L. Finney, Pearson Publications, 2010, ISBN: 978-8		
Module	Unit	Content	Hrs	Marks
		Madala I	(48+12)	Ext: 70
		Module I Preliminaries: Section 3 - Functions	-	
	1	Fremmanes. Section 5 - Functions		
	2	Preliminaries: Section 4 - Shifting Graphs.		
	3	Section 1.1-Rates of Change and Limits - Limits of Function Values onwards.		
I	4	Section 1.2 - Rules for Finding Limits. Topics up to and including Example 3.	12	Min.15
	5	Section 1.2 - Rules for Finding Limits. Rest of the section.		
	6	Section 1.4- Extensions of the Limit Concept. Topics up to and including Example 6.		
	7	Section 1.5 - Continuity.		Min.15
	8	Section 2.1 - The Derivative of a Function (The topic Graphing f' from estimated values is optional).		
	9	Section 2.2 - Differentiation Rules.		
II	10	Section 2.3 - Rates of Change. Topics up to and including Example 5.	15	
	11	Section 2.5 - The Chain Rule. Topics up to and including Example 6.		
	12	Section 2.6- Implicit Differentiation and Rational Exponents. Topics up to and including Example 5.		
		Module III		
ш	13	Section 3.1 - Extreme Values of Functions. Topics up to Finding Extrema.		
	14	Section 3.1 - Extreme Values of Functions- Topics from Finding Extrema onwards.		
	15	Section 3.2 - The Mean Value Theorem -Topics up to and including Example 4. (Proof of Theorem 3 is optional).	11	Min.15
	16	Section 3.2 - The Mean Value Theorem- Increasing Functions and Decreasing Functions		

	17	Section 3.3 - The First Derivative Test for Local Extreme Values.		
		Module IV		
	18	Section 3.4 - Graphing with y' and y'' - Topics up to and including Example 5.		
	19	Section 3.4 - Graphing with y' and y''- Topics from The Second Derivative Test for Local Extreme Values onwards.		
IV	20	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms Topics up to and including Summary for Rational Functions.	10	Min.15
	Dominant Terms- Topics from Horizonta	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms- Topics from Horizontal and Vertical Asymptotes up to and including Example 12.		
	22	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms-Topics from Graphing with Asymptotes and Dominant Terms onwards.		
		Module V		
V	Trigonometric Functions,		12	
References	1	· · · · · · · · · · · · · · · · · · ·		_
 Erw Rob Soo Tom Line Mic 	in Krey ert T Sr T Tan, n M. Ap ear Alge chael Va	ton, Biven, & Stephen Davis, Calculus, 7 th Ed., Wiley I szig, Advanced Engineering Mathematics, 10 th Ed, John nith and Roland B Minton, Calculus, 4 th Ed. McGraw-H Calculus, 9 th Ed.Brooks/Cole Pub Co. oostol, Calculus, Vol 1: One Variable Calculus with an I ebra, 2 nd Ed, John Wiley & Sons. an Biezen Calculus Lectures: <u>u.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG</u>	n Wiley & Hill Compa	nies

*Optional topics are exempted for end semester examination

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mappi	ng of C	Os wit	h PSOs	and PO	s :	

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	-	2	1	3	-	1
CO 2	2	3	2	1	3	-	2	1	3	-	1
CO 3	2	3	2	1	3	-	2	2	3	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	✓	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	BSc Mathemati	cs Honours		
Course Code	MAT2CJ101 / 2	MAT2MN100		
Course Title	INTEGRAL C	ALCULUS		
Type of Course	Major			
Semester	II			
Academic	100-199			
Level				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours
		per week	per week	
	4	4	-	60
Pre-requisites	Basic knowledg	ge of Functions, Limits, Con	tinuity and Dif	ferentiation
	(MAT1CJ101 -	Differential Calculus).		
Course	The course pro-	vides a comprehensive expl	loration of integ	gral calculus, covering
Summary	techniques suc	h as indefinite integrals,	Riemann sun	ns, definite integrals,
	properties of i	integrals, the Fundamental	l Theorem, L'	Hopital's Rule, basic
	Ū.	nulas, and applications in fi	0	
		hs of plane curves, and area		0
		idents gain proficiency in s		
	problems involv	ving integration and its appl	ications in vari	ous fields.

•

•

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge	Evaluation Tools
CO1	Find indefinite and definite integrals of functions.	E	Category# F	used Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
CO2	Evaluate derivatives and integrals of logarithmic, exponential, inverse trigonometric functions and use it for computations of other limits	Е	F	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
CO3	Apply integration formulas to find the area between two curves, the surface area and volume of a solid of revolution.	Ap	F	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
	ber (R), Understand (U), Apply (Ap), Ana Knowledge(F) Conceptual Knowledge (C) (M)	=		

Detailed Syllabus:

Textbook		llus and Analytic Geometry, 9 th Edition, George B. Thor L. Finney, Pearson Publications, 2010, ISBN: 978-81749		
Module	Unit	Content	Hrs	Marks
			(48+12)	Ext: 70
	1	Module I Section 4.1 - Indefinite Integrals.		
	2	Section 4.3 - Integration by Substitution - Running the Chain Rule Backward.		
I	3	Section 4.5 - Riemann Sums and Definite Integrals. (Example 9 is optional.)	14	Min.15
	4	Section 4.6 - Properties, Area, and the Mean Value Theorem - Topics up to and including Example 6.		
	5	Section 4.6 - Properties, Area, and the Mean Value Theorem- Topics from The Average Value of an Arbitrary Continuous Function onwards.	-	
		Module II		
	6	Section 4.7 – The Fundamental Theorem (Example 6 is optional).		
	7	Section 4.8 - Substitution in Definite Integrals.		
	8	Section 6.2 - Natural Logarithms- Topics up to and including The Graph and Range of ln x.		
п	9	Section 6.2 - Natural LogarithmsTopics from Logarithmic Differentiation onwards.	11	Min.15
	10	Section 6.3 - The Exponential Function- Topics up to and including Example 4.		
	11	Section 6.3 - The Exponential Function- Topics from The Derivative and Integral of e ^x onwards.		
		Module III		
	12	Section 6.6 - L' Hospital's Rule		
III	13	Section 6.9 - Derivatives of Inverse Trigonometric Functions; Integrals.	12	Min.15
111	14	Section 7.1 - Basic Integration Formulas.		141111.13
	15	Section 7.2 - Integration by Parts		
	16	Section 7.3 Partial Fractions.		
		Module IV	4	
IV	17	Section 5.1 - Areas Between Curves Topics up to and including Example 2.	11	Min.15

	18	Section 5.1 - Areas Between Curves- Topics from Boundaries with Changing Formulas		
	19	Section 5.2 - Finding Volumes by Slicing. (Example 2 may be done as open ended).		
	20	Section 5.3 - Volumes of Solids of Revolution- Disks and Washers - Topics up to and including Example 4.		
	21	Section 5.5 - Lengths of Plane Curves Topics up to and including Example 2.		
	22	Section 5.6 - Areas of Surfaces of Revolution- Topics up to and including Example 2.		
		Module V		
	Invers	se Functions and their Derivatives,		
	a^x an	$d \log_a x$,		
V	Invers	se Trigonometric Functions and their derivatives,	12	
	Hyper	rbolic Functions,		
	Integr	als and their derivatives,		
	-	ation using trigonometric substitutions,		
	Mom	ents and Center of Mass.		

Ceterences

- Howard Anton, Biven, & Stephen Davis, Calculus, 7th Ed., Wiley India
 Erwin Kreyszig, Advanced Engineering Mathematics, 10th Ed, John Wiley & Sons.
 Robert T Smith and Roland B Minton, Calculus, 4th Ed. McGraw-Hill Companies
- 4. Soo T Tan, Calculus, 9th Ed. Brooks/Cole Pub Co.
- 5. Tom M. Apostol, Calculus, Vol 1: One Variable Calculus with an Introduction to Linear Algebra, 2nd Ed, John Wiley & Sons.
- 6. Michael Van Biezen Calculus Lectures: https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	-	3	1	3	-	1
CO 2	2	3	2	1	3	-	3	1	3	-	1
CO 3	2	3	2	1	3	-	3	2	3	-	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B.Sc. Mathema	tics Honours					
Course Code	MAT3CJ201						
Course Title	MULTIVARI	ABLE CALCULUS					
Type of Course	Major						
Semester	III						
Academic Level	200-299						
Course Details	Credit	Lecture/	Practical	Total Hours			
		Tutorial	per week				
		per week					
	4	3	2	75			
Pre-requisites	Basic knowled	ge of vectors, dot product, c	cross product, t	riple products,			
	Knowledge of l	ines and planes in 3-dimens	sional space				
Course Summary	Multivariable C	Calculus takes the concepts	learned in the	single variable			
		e and extends them to mu	1	1			
		eterizations of Plane Curv	,				
	-	e, Cylinders and Quadric	•	-			
		unctions of many variables,					
	-	ector-valued functions; app					
		vatives of multivariable fur		1			
		s, applying double and tripl	-				
	to find area, volume, surface area, vector fields, finding curl and divergence of						
		vector fields; line integrals; Green's Theorem; parametric surfaces, including					
		, tangent planes, and areas;	orientation of	a surface; Divergence			
	Theorem; and S	Stokes's Theorem.					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Describe various coordinate systems— Cartesian, polar, cylindrical, and spherical—to represent, analyse, and interpret geometric figures and spatial relationships.	Ap	C	Internal Examination/ Assignment/ End Sem examination				
CO2	Apply limits, partial derivatives, and multiple integrals for functions of several variables to solve complex mathematical and real-world problems.	Ap	С	Internal Examination/Sem inar/ Assignment/ Report/ End Sem examination				
CO3	Apply advanced integration techniques and vector calculus principles to evaluate integrals in various coordinate systems.	Ap	С	Internal Examination/Sem inar/ Assignment/ Report/ End Sem examination				
	 F - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) F - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive 							

Knowledge (M)

Detailed Syllabus:

Textbook	Calculus and Analytical Geometry, George B Thomas, Ross L Finney- Addison Wesley- 9th Edition.							
Module	Unit Content							
		Module I						
	1	Section 9.4: Parameterizations of Plane Curves						
		Topics up to and including Example 7						
	2	Section 9.6: Polar Coordinates						
		Definition of Polar Coordinates, Negative Values of r, Elementary Coordinate Equations and Inequalities, Cartesian Versus Polar Coordinates.						
	3	Section 10.5: Lines and Planes in Space	-					
Ι		Lines and Line Segments in Space, The Distance from a Point to a Line in Space, Equations for Planes in Space, Angles Between Planes; Lines of Intersection.	10					
	4	Section 10.6: Cylinders and Quadric Surfaces	-					
		Cylinders, Drawing Lesson, Quadric Surfaces, Drawing Lesson.						
	5	Section 10.7: Cylindrical and Spherical Coordinates						
		Cylindrical Coordinates, Spherical Coordinates						
		Module II						
	6	Section 12.1: Functions of Several Variables						
		Functions and Variables, Graphs and Level Curves of Functions of Two Variables, Contour Lines, Level Surfaces of Functions of Three Variables.						
	7	Section 12.2: Limits and Continuity						
		Limits, Continuity, Functions of More Than Two Variables.						
П	8	Section 12.3: Partial Derivatives	12					
		Definitions and Notation, Calculations, Functions of More Than Two Variables, The Relationship Between Continuity and the Existence of Partial Derivatives, Second Order Partial Derivatives, Euler's Theorem, Partial Derivatives of Still Higher Order.						
	9	Section 12.4: Differentiability, Linearization, and Differentials	-					

		Differentiability Herry to Lingerize a Experien of Two	
		Differentiability, How to Linearize a Function of Two Variables, How Accurate is the Standard Linear	
		Approximation? Predicting Change with Differentials (Topics	
		up to and including Example 7)	
	10	Section 12.5: The Chain Rule	
		The Chain Rule for Functions of Two Variables (Proof of	
		Theorem 5 is optional), The Chain Rule for Functions of	
		Three Variables, The Chain Rule for Functions Defined on Surfaces, Implicit Differentiation, Remembering the Different	
		Forms of the Chain Rule, The Chain Rule for Functions of	
		Many Variables.	
		Module III	
	11	Section 12.7: Directional Derivatives, Gradient Vectors, and Tangent Planes	
		Directional Derivatives in the Plane, Geometric Interpretation	
		of the Directional Derivative, Calculation, Properties of	
		Directional Derivatives, Gradients and Tangent to Level	
		Curves, Functions of Three Variables.	
	12	Section 12.7: Directional Derivatives, Gradient Vectors, and Tangent Planes	
		Equations for Tangent Planes and Normal Lines, Planes Tangent to a Surface $T = f(x, y)$. Also has Pulse for Cradients	
III		Tangent to a Surface $z = f(x, y)$, Algebra Rules for Gradients.	
	13	Section 12.8: Extreme Values and Saddle points	
		The Derivative Tests.	11
	14	Section 12.8: Extreme Values and Saddle points	
		Absolute Maxima and Minima on Closed Bounded Regions,	
		Conclusion.	
	15	Section 12.9: Lagrange Multipliers	
		Constrained Maxima and Minima, The Method of Lagrange	
		Multipliers (Theorem 9 and Corollary of Theorem 9 are	
		optional).	
	16	Section 12.9: Lagrange Multipliers	
		Lagrange Multipliers with Two Constraints.	
		Module IV	
	17	Section 13.1: Double Integrals,	
		Double Integrals over Rectangles, Properties of Double	
IV		Integrals, Double Integrals as Volumes, Fubini's Theorem for	
		Calculating Double Integrals.	10
	18	Section 13.1: Double Integrals	12
L	1	l.	I

		Double Integrals over Bounded Nonrectangular Regions, Finding the Limits of Integration.				
	19	Section 13.2: Areas, Moments and Centers of Mass				
		Areas of Bounded Regions in the Plane, Average Value.				
	20	Section 13.3: Double Integrals in Polar Form				
		Integrals in Polar Coordinates, Limits of Integration, Changing Cartesian Integrals into Polar Integrals.				
	21	Section 13.4: Triple Integrals in Rectangular Coordinates				
		Triple Integrals, Properties of Triple Integrals, Volume of a Region in Space, Evaluation.				
	22	Section 13.4: Triple Integrals in Rectangular Coordinates				
		Average Value of a Function in Space.				
		Module V (Practicum)				
	Triple	Integrals in Cylindrical Coordinates, Spherical coordinates				
	Substitution in Multiple Integrals					
	Vector Valued Functions and Space Curves					
	Line Integrals					
	Vector Fields, Work, Circulation and Flux					
V	Path Independence, Potential Functions and Conservative Fields.					
	Green's Theorem in the Plane (Proof is Optional)					
	Surface area and surface integrals					
	Parametrized surfaces					
	Stoke'	's theorem (Proof is optional)				
	The Divergence theorem (Proof is Optional)					
References:						
1. Anto	on, Bive	ens & Davis : Calculus Early Transcendentals (10/e) John Wiley				
	 & Sons, Inc.(2012) ISBN: 9780470647691 Arnold Ostebee & Paul Zorn: Multivariable Calculus (2/e) W. H. Freeman 					
	Custom Publishing, N.Y.(2008)ISBN: 9781429230339 3. James Stewart : Calculus (8/e) Brooks/Cole Cengage					
	Learning(2016) ISBN:9781285740621					
	4. Jerrold E. Marsden & Anthony Tromba :Vector Calculus (6/e) W. H. Freeman and Company ,New York(2012) ISBN: 9781429215084					
	Pearson(2018) ISBN 0134438981					
	0	d Company (2012) ISBN: 1429231874				

- 7. Robert A Adams & Christopher Essex : Calculus: A complete Course (8/e) Pearson Education Canada (2013) ISBN: 032187742X
- 8. William Wade: An Introduction to Analysis, (4/e) Pearson Education

*Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	3	2	1	1	1	1	3
CO 2	3	2	2	2	3	2	1	_	3	_	1
CO 3	3	2	1	1	3	2	1	1	1	-	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Report
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Internal Exam Assignment Seminar		Report	End Semester Examinations
CO 1	√	\checkmark	\checkmark	✓	✓
CO 2	√	\checkmark	\checkmark	\checkmark	✓
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Programme	BSc Mathematics Ho	nours					
Course Code	MAT3CJ202 / MAT3	MAT3CJ202 / MAT3MN200					
Course Title	MATRIX ALGEBR	A					
Type of Course	Major						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit Lecture/Tutorial Practicum Total Ho						
		per week	per week				
	4	4	-	60			
Pre-requisites		juations and their solutior					
	2. Euclidean Spaces a	and their algebraic and ge	ometric proper	rties.			
Course	This course covers m	atrix theory and linear alg	ebra, emphasi	zing topics useful			
Summary	in many other disci	plines. It begins with th	ne study of s	systems of linear			
	equations and the pro	equations and the properties of matrices. Emphasis is given to topics including					
	systems of equations	systems of equations, vector spaces, linear dependence and independence,					
	dimension, linear tran	nsformations, eigenvalues	and diagonali	ization.			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Solve a linear system using row reductions and echelon forms of a matrix.	Ap	С	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam
CO2	Compute eigen values and eigen vectors of a square matrix.	Е	Р	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam
CO3	Interpret Linear Transformations using matrices and visualize geometrically.	An	С	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam
	nber (R), Understand (U), Apply l Knowledge(F) Conceptual Kno ge (M)			

Detailed Syllabus:

Book Module	Publi	cations 2006.			
	Unit	Content	Hrs (60)	External Marks (70)	
Ι		Module I			
	1	Section 1.1: Systems of Linear Equations		-	
		Systems of Linear Equations, Matrix Notation, Solving a Linear System.		Min. 15	
	2	Section 1.1: Systems of Linear Equations			
		Elementary Row Operations, Existence and Uniqueness Questions.			
	3	Section 1.2: Row Reduction and Echelon Forms			
		Row Reduction and Echelon Forms, Pivot Positions, The Row Reduction Algorithm.			
	4	Section 1.2: Row Reduction and Echelon Forms			
		Solutions of Linear Systems, Parametric Descriptions of Solution Sets, Back Substitution, Existence and Uniqueness Questions.	14		
	5	Section 1.3: Vector Equations			
		Vector Equations, Vectors in \mathbb{R}^2 , Geometric Descriptions of \mathbb{R}^2 , Vectors in \mathbb{R}^3 , Vectors in \mathbb{R}^n .			
	6	Section 1.3: Vector Equations			
		Linear Combinations, A Geometric Description of Span $\{v\}$ and Span $\{u, v\}$, Linear Combinations in Applications.			
	7	Section 1.4: The Matrix Equation Ax = b			
		The Matrix Equation $Ax = b$, Existence of Solutions, Computation of Ax, Properties of the Matrix-Vector Product Ax.			
II		Module II			
	8	Section 1.5: Solution Sets of Linear Systems		1	
		Homogeneous Linear Systems, Parametric Vector Form, Solutions of Non-Homogenous Systems.	12		
	9	Section 1.7: Linear Independence	13		

		Linear Independence, Linear Independence of Matrix Columns, Sets of One or Two Vectors, Sets of Two or More Vectors.		Min. 15
	10	Section 1.8: Introduction to Linear Transformations Introduction to Linear transformations, Matrix Transformations.	-	
	11	Section 1.8: Introduction to Linear Transformations		
		Linear Transformations		
	12	Section 1.9: The Matrix of a Linear Transformation		
		The Matrix of a Linear Transformation, Geometric Linear Transformation of \mathbb{R}^2 .		
	13	Section 1.9: The Matrix of a Linear Transformation	-	
		Existence and Uniqueness Questions. (Topics up to and including Theorem 11).		
III		Module III		
	14	Section 2.1: Matrix Operations		
		Matrix Operations, Sums and Scalar Multiples, Matrix Multiplication, Properties of Matrix Multiplication, Powers of a Matrix, The Transpose of a Matrix.		Min. 15
	15	Section 2.2: The Inverse of a Matrix		
		The Inverse of a Matrix (Example 3 is optional), Elementary Matrices (Proof of Theorem 7 is optional).		
	16	Section 2.2: The Inverse of a Matrix		
		An Algorithm for Finding A^{-1} , Another View of Matrix Inversion.	11	
	17	Section 2.8 : Subspaces of \mathbb{R}^n		
		Subspaces of \mathbb{R}^n , Column Space and Null Space of a Matrix, Basis for a Subspace.		
	18	Section 2.9: Dimension and Rank		
		Coordinate Systems, The Dimension of a Subspace (Topics up to and including Theorem 15).		
IV		Module IV		
	19	Section 5.1: Eigen Vectors and Eigen Values		
		Eigen Vectors and Eigen Values (Topics up to and including Theorem 2).	10	

	20	Section 5.2: The Characteristic Equation		
		The Characteristic Equation, Determinants (Topics up to and		Min. 15
		including Theorem 3).		
	21	Section 5.2: The Characteristic Equation		
		The Characteristic Equation, Similarity (Topics up to and		
		including Theorem 4).		
	22	Section 5.3: Diagonalization		
		Diagonalization (Proof of Theorem 5 is optional), Diagonalizing		
		Matrices, Matrices Whose Eigen Values Are Not Distinct.		
V		Module V	12	
	Dete	rminants, Properties of Determinants,		
	Appl	ications of Linear Systems,		
	Char	acterizations of Invertible Matrices, Partitioned Matrices,		
	Appli	cation to Computer Graphics,		
	Eiger	n Vectors and Linear Transformations.		
Reference	es			
		ary Linear Algebra, Howard Anton, Chris Rorres, Wiley Publica	tions	
		lgebra Done Right, 3/e, Sheldon Axler, Springer Nature,2015.		
		ion to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge		
		hear Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002		
		lgebra And its Applications, 4/e, Gilbert Strang, Cengage India		imited
		lgebra – A Geometric Approach, S.Kumaresan, Prentice Hall of		_
		r, Otto. Linear algebra with applications. Vol. 52. Eaglewood C	liffs, NJ:	Prentice
L 1	all 100			

Hall, 1997.8. Holt, Jeffrey. *Linear Algebra with Applications*. wh freeman, 2017.

*Optional topics are exempted for end semester examination

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	-	3	-	3	-	-
CO 2	1	3	2	2	3	-	3	-	3	-	-
CO 3	2	1	3	3	3	-	3	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathematics Ho	nours			
Course Code	MAT4CJ203				
Course Title	REAL ANALYSIS	[
Type of	Major				
Course					
Semester	IV				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours	
		per week	per week		
	4	3	2	75	
Pre-requisites	1. Mathematical Logic and necessary exposure to set theory.				
	2. Basic Calculus				
Course	After introducing the basic notions in set theory, the course develops into the				
Summary	construction of the Real number system. Thereafter Real functions are				
	introduced and the no	ptions of limit and contin	uity are develo	ped.	

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledg e	Evaluation Tools used
			Category#	
CO1	Demonstrate Proficiency in Set Theory Fundamentals and Real Number Properties	An	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
CO2	Apply the completeness property of \mathbb{R} , and solve problems involving intervals and applications of the supremum property.	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
CO3	Analyse sequences and their limits, apply limit theorems, and demonstrate concepts such as monotone sequences, sub- sequences, and the Cauchy Criterion, as well as their applications in solving problems related to sequences and limits.	An	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
# - Fa	member (R), Understand (U), Apply ctual Knowledge(F) Conceptual Kno cognitive Knowledge (M)			

Detailed Syllabus:

Textbook		ntroduction to Real Analysis, 4/e, Robert G Bartle, Viley & Sons (2011)	, Donald R	Sherbert John
		alculus: Soo T Tan Brooks/Cole, Cengage Learnin	eg (2010) IS	BN 978-0-534-
		6579-7	0	
Module	Unit	Content	Hrs (45+30)	External Marks (70)
Ι		Module 1		
	1	Introduction to Set theory (Text 1)		
		Section 1.1: Sets and Functions	8	Min.15
		(Problems to identify injective/ surjective		
		functions included in practicum)		
	2	Section 1.2: Mathematical Induction		
		Principle of mathematical induction -statement and		
		problems applying the same.		
		(Proofs of principle of mathematical induction,		
		and principle of strong induction are included in		
	3	practicum) Section 1.3: Finite and Infinite sets		
	5			
		Countable and Uncountable sets		
		(Proof of 1.3.9 and problems using Cantor's theorem included in practicum)		
II		Module II		
	4	The Real numbers (Text 1)		
		Section 2.1 – The algebraic properties of \mathbb{R} .		
	5	Section 2.2 – Absolute value and the Real Line.		
	6	Section 2.3 – Completeness property of \mathbb{R}	12	Min.15
		(Proofs included in Practicum).		
	7	Section 2.4: Applications of supremum property		
		Archimedean property and its corollaries,		
		Existence of $\sqrt{2}$, density theorem and its corollary.		
		Proof for the existence of $\sqrt{2}$ can be omitted from		
		external examination.		
		(All other discussions are included in practicum)		
	8	Section 2.5: Intervals. Characterization theorem		
		(Proof is optional) (Binary representation, Decimal		
		-fraction conversion, Cantor's second proof		
		included in practicum)		
III		Module III		
	9	Sequences and Limits (Text 1)		
		Section 3.1 – Sequences and their limits.		
	10	Section 3.2: Limit theorems (proofs are		
	11	optional), Problems to find limits	15	Min 15
	11	Section 3.3: Monotone Sequences	15	Min.15
		Problems applying monotone convergence theorem		
		included in practicum		
		Euler number- introduction only.		

	12 Section 3.4: Subsequence and the Bolzano-		
	Weierstrass theorem (Second proof of Theorem		
	3.4.8 is omitted for external exam and limits		
	superior and inferior are included in practicum)		
	13 Section 3.5: The Cauchy Criterion (Examples		
	3.5.9, 3.5.11 and Corollary 3.5.10 are included in		
	Practicum).		
	14 Section 3.6: Properly divergent		
	sequences		
IV	Module IV		
	15 Series of Real numbers (Text 2)		
	Section 9.2: Series – Defining sum,		
	Convergence/divergence, Geometric series,		
	Harmonic series, Divergence test, Properties of		
	convergent series (Statements only)		
	Practice problems are included in practicum	10	Min.10
	16 Section 9.3: Integral Test, Convergence and		
	divergence of p – series. Practice problems are		
	included in practicum		
	17 Section 9.4: Comparison test, Limit		
	comparison test Practice problems are		
	included in practicum		
	18 Section 9.5: Alternating series test. Practice		
	problems are included in practicum		
	19 Section 9.6: Absolute and conditional convergence,		
	Ratio test, Root Test, Rearrangement of series.		
	Practice problems are included in practicum		
V	Module V (Practicum)		-
·			
	Problems solving sessions / Group discussions / Seminars		
	/ Assignments / Mini Projects etc can be used for		
	evaluation. The teacher in charge may assist by running		
	group discussions, overseeing class seminars and		
	referring library books for self-study and note preparation		
	1 Practice problems to identify injective/ surjective		
	functions. Proofs of principle of mathematical		
	induction, and principle of strong induction.		
	2 Proof of 1.3.9 and problems using Cantor's theorem		
	3 Topics in 2.4.1, 2.4.2, 2.4.3. Binary representation,		
	Decimal -fraction conversion, Cantor's second proof		
	1.4. Il unit superior and limit interior-definition related		
	4 Limit superior and limit inferior- definition, related	30	
	 theorems and problems 5 Examples 3.5.9, 3.5.11 and Corollary 3.5.10 	30	

References

- 1. Tom.M. Apostol, Calculus I, Wiley & Sons.
- 2. Tom.M. Apostol, Mathematical Analysis, 2/e, Addison-Wesley.
- 3. Richard R Goldberg, Methods of Real Analysis, 2/e, Wiley
- 4. Raymond L Wilder, Introduction to the Foundations of Mathematics, 2/e, John WileySons

Optional Programming References for Practicum:

(1) SageMath Calculus Tutorial <u>https://www.sagemath.org/calctut/limits.html</u>

(2) SageMath 2D plotting https://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html#

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	2	3	-	3	-	3	-	-
CO 2	1	3	2	2	3	_	3	-	3	_	-
CO 3	3	2	3	3	3	-	3	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathematics Honours					
Course Code	MAT4CJ204					
Course Title	BASIC LINEAR ALGEBRA					
Type of Course	Major					
Semester	IV					
Academic Level	200 - 299					
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	4		60		
Pre-requisites	1. Familiarity with system of equations and their solutions					
	2. Knowledge about matrices and matrix operations.					
Course Summary	This course is a quick review of linear algebra, intended for students who have					
	already taken a previous course in linear algebra or have some experience with					
	vectors and matrices. It begins with the concepts of vector spaces, subspaces,					
	bases and dimension. Linear transformations are introduced as 'natural maps'					
	between vector spaces. The course opens up the classical finite dimensional					
	inner product theory for the canonical reduction of a matrix as a special case of					
	a self-adjoint operator.					

•

Course Outcomes:

СО	CO Statement	Cognitive	Knowledge	Evaluation			
		Level*	Category#	Tools used			
CO1	Apply concepts related to	Ар	С	Internal			
	vector spaces and subspaces, including			Exam/Assignm			
	determining whether a set forms a			ent/Seminar/			
	subspace and finding the span of a set			Viva/ End Sem			
				Exam			
CO2	Demonstrate proficiency in analysing null	An	Р	Internal			
	spaces, column spaces, and linear			Exam/Assignm			
	transformations, including identifying			ent/Seminar/			
	the kernel and range of a linear			Viva/ End Sem			
	transformation and contrasting the			Exam			
	properties of null space and column space.			LXdill			
CO3	Evaluate and apply concepts related to	Е	С	Internal			
	bases, dimensionality, and rank of vector			Exam/Assignm			
	spaces, including identifying bases for			ent/Seminar/			
	null space and column space, determining			Viva/ End Sem			
	dimensions of subspaces, and applying the			Exam			
	rank theorem to systems of equations.			LXam			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Knowledge	Knowledge (M)						

Detailed Syllabus:

Text	Linear Algebra and its Applications, Third Edition, David .C. Lay, Pearson							
Book	Public	iblications						
Module	Unit	Content	Hrs	External				
			(48+	Marks				
			12)	(70)				
Ι		Module I						
	1	Section 4.1: Vector Spaces and Subspaces						
		Vector Spaces and Subspaces, Subspaces, A Subspace						
		Spanned by a Set.						
	2	Section 4.2: Null Spaces, Column Spaces, and Linear						
		Transformations.						
		The Null Space of a Matrix, An Explicit Description of						
		Nul A.						
	3	Section 4.2: Null Spaces, Column Spaces, and Linear						
		Transformations.	14	Min 15				
		The Column Space of a Matrix, The Contrast Between	14					
	1	Nul A and Col A.						
	4	Section 4.2: Null Spaces, Column Spaces, and Linear Transformations.						
		Kernel and Range of a Linear Transformation.						
	5	Section 4.3: Linearly Independent Sets; Bases.						
	5	Linearly Independent Sets; Bases, The Spanning Set						
		Theorem.						
	6	Section 4.3: Linearly Independent Sets; Bases.						
	0	Bases for Nul A and Col A, Two Views of a Basis.						
II		Module II						
	7	Section 4.4: Coordinate Systems.						
		Coordinate Systems, A Graphical Interpretation of						
		Coordinates, Coordinates in \mathbb{R}^n .						
	8	Section 4.4: Coordinate Systems.						
		The Coordinate Mapping.						
	9	Section 4.5: The Dimension of a Vector Space.						
		The Dimension of a Vector Space.		Min 15				
	10	Section 4.5: The Dimension of a Vector Space.	12	WIII 15				
		Subspaces of a Finite-Dimensional Space, The Dimensions						
		of Nul A and Col A.						
	11	Section 4.6: Rank						
		Rank, The Row Space.						
	12	Section 4.6: Rank						
		The Rank Theorem, Applications to Systems of Equations						
		(Topics up to and including Example 5).						
III	- 16	Module III						
	13	Section 6.1: Inner Product, Length and Orthogonality						
		The Inner Product, The Length of a Vector, Distance in \mathbb{R}^n .	ļ					
	14	Section 6.1: Inner Product, Length and Orthogonality	12	Min 15				
		Orthogonal Vectors, Orthogonal Complements, Angles in		-				
	15	\mathbb{R}^2 and \mathbb{R}^3 .						
	15	Section 6.2: Orthogonal Sets						

		Orthogonal Sets, An Orthogonal Projection (Topics up to						
		and including Example 4).						
	16	Section 6.2: Orthogonal Sets						
		Orthonormal Sets.						
	17	Section 6.4: The Gram-Schmidt Process						
		The Gram -Schmidt Process, Orthonormal Bases.						
	18	Section 6.4: The Gram -Schmidt Process						
		QR Factorization of Matrices.						
IV		Module IV						
	19	Section 7.1: Diagonalization of Symmetric Matrices						
		Diagonalization of Symmetric Matrices.	-					
	20	Section 7.1: Diagonalization of Symmetric Matrices						
		The Spectral Theorem. Spectral Decomposition.	-					
	21	Section 7.2: Quadratic Forms		Min 15				
		Quadratic Forms (Topics up to and including Example 3),	10	Will 15				
		Classifying Quadratic Forms.						
	22	Section 7.4: The Singular Value Decomposition						
		The Singular Value Decomposition, The Singular Values of						
		an $m \times n$ Matrix, The Singular Value Decomposition						
		(Topics up to and including Example 4 only).						
\mathbf{V}		OPEN ENDED	12					
	Book: 978-1-	Linear Algebra Lab Sessions Book: Mike Cohen, Practical Linear Algebra for Data Science, O'Reilly, 2019, ISBN 978-1-098-12061-0. Jupyter: <u>https://github.com/mikexcohen/LinAlg4DataScience</u>						
	Choose lab demos and exercises for 12 hours as per lecturer's discretion.							
	For Module I & II, Ch 2, 3, 5, 6 of book for Lab. For Module III, Ch 2 and Ch 9 of book for Lab. For Module IV, Ch 14 of book for Lab. Python and Jupyter review in Ch 16 of book.							
Reference	s							
2. Alg 3. Int	gebra Do roduction	Linear Algebra: Application Version, 11/e, Howard Anton & Cone Right, 3/e, Sheldon Axler, Springer Nature, 2015. In to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge ar Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002.	Press.	res Wiley				

- Basic Linear Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002.
 Linear Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India, 1991.
- 6. Bretscher, Otto. *Linear algebra with applications*. Vol. 52. Eaglewood Cliffs, NJ: Prentice Hall, 1997.
- 7. Blyth, Thomas Scott, and Edmund F. Robertson. *Basic linear algebra*. Springer Science & Business Media, 2013.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	2	3	-	3	-	3	-	-
CO 2	1	3	2	2	3	-	3	-	3	-	-
CO 3	3	2	3	3	3	-	3	-	3	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	~	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	\checkmark	✓
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Programme	BSc Mathematics Honours								
Course Code	MAT4CJ205								
Course Title	FUNDAMENT	FUNDAMENTALS OF PYTHON AND SAGEMATH							
Type of Course	Major	Major							
Semester	IV								
Academic Level	200-299								
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours					
	4	3	2	75					
	 2) A basic course in calculus with an understanding of differential and integral calculus (higher secondary level and one or two semester courses from Bsc) 3) A basic course in linear algebra ((higher secondary level)) 								
Course Summary	python program and read them f tasks using com- arrays is solved used to do vario A brief introduc analysis. Using advance mather course. Various and linear alge	of the course, it intends to is using various popular inte- files is introduced next alon ditionals and loops. The pro- using the python module ne- bus mathematical problems etion of python module pane to the Python programming matics software sagemath practical problems making bra are to be solved using me to know some of the app	erfaces. How to g with the conc oblems connect umpy. The pyth related with syn das is given, wh g structure, an is given in the g use of concep the sagemath	handle data and save cepts of repeating the red with matrices and non module SymPy is mbolic computations. hich is used to do data introduction to the e second part of the pts from the calculus software so that the					

Course Outcomes (CO):

СО	CO Statement	Cogniti ve Level*	Knowledg e Category #	Evaluation Tools used				
CO1	Develop proficiency in fundamental to advanced Python programming concepts, including variables, data types, control structures, functions, modules, file handling, and matrix operations.	С	С	Internal Exam/Quiz/E nd Sem				
CO2	Demonstrate competence in data visualization techniques using Matplotlib, encompassing plotting mathematical functions, 2D and 3D graphics, and animated plots.	Ар	С	Internal Exam /Assignment/ End Sem				
CO3	CO3Develop proficiency in symbolic computation with SymPy, data manipulation with Pandas, and algebraic computations with SageMath, enabling them to solve diverse mathematical problemsCCInternal Exam /viva/ Seminar/End Sem							
# - Fa	numerically and analytically. * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Textbook	 Ajith Kumar B.P., Python for Education, <u>https://scischool.in/python/pythonForEducation.pdf</u> Gregory V. Bard, Sage for Undergraduates (online version) <u>http://www.people.vcu.edu/~clarson/bard-sage-for-undergradu</u> <u>2014.pdf</u> Tuan A. Le and Hieu D. Nguyen, SageMath Advice For Calculus, 						
		https://users.rowan.edu/~nguyen/sage/SageMathAdvice ulus.pdf	<u>forCalc</u>				
Module	Unit	Content	Hrs (45+ 30)				
		Module I					
	1	(Text 1: Chapter 2, Chapter 3) Section 2.1: Getting started with Python					
	-	Section 2.2: Variables and Data Types, Keywords,					
		Section 2.3: Operators and their Precedence.					
	2	Section 2.4: Python Strings	-				
		Section 2.5: Python Lists					
		Section 2.6: Mutable and Immutable Types.					
		Section 2.7: Input from the Keyboard					
		Section 2.8: Python Syntax, Colon & Indentation					
	3	Section 2.9: Controlling the Programe Flow	-				
Ι		Section 2.10: Iteration: for loops					
-		Section 2.11: Conditional Execution: if, elif and else	12				
		Section 2.12: Modify loops: break and continue					
	4	Section 2.15: Functions	-				
		Section 2.17: Python Modules and Packages.					
		Section 2.18: File Input/Output					
		Section 2.19: Formatted Printing.					
		Section 2.21: Matrices in pure Python.					
	5	All topics up to Section 3.1,	-				
		Section: 3.1: NumPy Arrays					
	6	Section: 3.2: Vectorizing Functions.	-				

Π		Module II (Text 1: Chapter 4)					
	7	Section: 4.1: The Matplotlib Module					
	8	Section: 4.2: Plotting mathematical functions					
		Section: 4.3: Plotting Error Bars,					
		Section: 4.4: Simple 2D animation.	10				
	9	Section: 4.5: Famous Curves					
		Section: 4.6: 2D plot using colors.					
	10	Section: 4.7: 3D Plots.					
		Module III (Tout 1: Chapter 5 and Chapter 6)					
	11	(Text 1: Chapter 5 and Chapter 6) All topics up to Section 5.1,					
		Section 5.1: SymPy, Symbolic Computation in Python.					
	12	Section 5.2: SymPy, Derivative and Integral					
III	13	Section 5.3: SymPy, Operation on sets	10				
	14	14 Section 6.1: Series					
	15	Section 6.2: Data Frame					
	16 Section 6.3: Practical Examples						
		Module IV (Teast 2: Character 1, Few service 17, 18, 10)					
	17	(Text 2: Chapter 1, For units 17,18,19) Getting and installing sagemath in Windows, Ubuntu OS Using sagemath using cocalc (online)					
		Section 1.1: Using Sage as a Calculator					
		Section 1.2: Using Sage with Common Functions					
		Section 1.3: Using Sage for Trigonometry					
	18	Section 1.5: Matrices and Sage, Part One					
IV		1.5.1: A First Taste of Matrices	13				
1.		1.5.3: Doing the RREF in Sage	15				
	19	Section 1.5: Using Sage to Manipulate Polynomials					
		(Text 3: Chapter 2, 3, 5, For units 20,21,22)					
	20	Section 2.1: Plotting Graphs					
		Section 3.1: The Derivative					
	21	Section 3.2: Higher-Order Derivatives					

Pra	Section 5.2: Riemann Sums and the Definite Integral All topics up to 5.2.1, 5.2.1: Riemann Sum Using Left Endpoints Module V Practical etical problems in basic Python (Any 3 from the list) 1) Write a programme to work as a basic Income Tax	30
Pra	5.2.1: Riemann Sum Using Left Endpoints Module V Practical actical problems in basic Python (Any 3 from the list)	30
Pra	Module V Practical actical problems in basic Python (Any 3 from the list)	30
Pra	Practical	30
Pra	actical problems in basic Python (Any 3 from the list)	30
Pra		
	1) Write a programme to work as a basic Income Tax	
	Calculator	
	2) Write a program that takes the length of an edge (an integer) as input and prints the cube's surface area as output.	
	3) Write a loop that counts the number of space characters in a string. Recall that the space character is represented as ''.	
	4) Write a while loop that computes the factorial of a given integer N.	
	5) Write a programme to compute square roots	
	6) Write a programme for data Encryption based on Caeser shift.	
	7) Develop a program that computes the Flesch Index for a text file.	
	8) Using a List to Find the Median of a Set of Numbers	
	9) Finding the Mode of a List of Values.	

1)	Evaluate a Taylor series numerically.
2)	Interpolate a function using
	a) Newton's forward interpolation
	b) Newton's backward interpolation
	c) Lagrange's Interpolation
	d) Newton's General Interpolation
3)	Find integral of function using
	a) Trapezoidal rule
	b) Simpson's 1/3-rule
4)	Find derivative of function numerically.
5)	Solve first order differential equations numerically.
	a) Euler method
	b) Fourth order Runge-Kutta method
6)	Solve algebraic equations numerically.
	a) The Bisection method
	b) Regula Falsi Method
	cal problems using numpy, matplotlib, pandas and / (Any 3 from the list)
1) Var	rious vector operations. such as dot product, cross product and divergent using numpy module.
2) Var	tious matrix operations such as determinant, inverse and transpose using numpy module.
3) Sol	ve system of linear equations using numpy module.
4) Plo	t various 2-D, 3-D curves using matplotlib module.
5) Plo	t various 3-D surfaces using matplotlib module.
6) Fin	d maxima and minima of a function using SymPy module
7) Neo	cessary data analysis of a given data using pandas module

	Practical problems in Sage (Any 3 from the list)
	1) Solve a system of linear equations (Text 2)
	 Constrained Optimization by Lagrange Multipliers (Text 2, 4.18.2)
	3) Traffic Flow (Text 3)
	4) Minimum Cost (Text 3)
	5) Packaging (Minimum Surface Area) (Text 3)
	6) Maximize Revenue (Text 3)
	7) Area Between Curves (Text 3)
	8) Average Value and mean value theorem (Text 3, 6.2)
	9) Newton's Method to find approximate roots (Text 3)
Refere	ences:
1	Amit Saha, Doing Math with Python, No Starch Press, 2015.
23	Vernon L. Ceder, The Quick Python Book, Second Edition, Manning.
5	Python tutorial online, https://www.geeksforgeeks.org/python-programming-language/
4	2D plotting, https://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html
5	3D Graphics, https://doc.sagemath.org/html/en/reference/plot3d/index.html
6	Linear Algebra, https://doc.sagemath.org/html/en/tutorial/tour_linalg.html
7	John Harris, Karen Kohl, and John Perry, Peering into Advanced Mathematics
-	through Sage-colored Glasses
8	Paul Zimmermann, Alexandre Casamayou, Computational
	Mathematics with SageMath,
	https://www.sagemath.org/sagebook/english.html Kenneth A Lambert, Fundamentals of Python First Programs, Edn 2, Cengage
	Kenneur A Lambert, Fundamentais of Fython First Programs, Eur 2, Cengage

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	1	3	2	3	3	1	1	2
CO 2	2	2	3	1	3	2	3	3	1	1	2
CO 3	2	2	3	1	3	2	3	3	1	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Quiz
- Practical Based Assessment
- Final Exam (70%)

	Internal Exam	Assignment	Semi nar	Quiz	Viva	Practical based assessment	End Semester Examinations
CO 1	\checkmark			\checkmark		\checkmark	\checkmark
CO 2	\checkmark					\checkmark	\checkmark
CO 3			\checkmark				

Programme	B. Sc. Mathematics H	Ionours					
Course Code	MAT5CJ301						
Course Title	REAL ANALYSIS	Ι					
Type of Course	Major						
Semester	V						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
	per week per week						
	4	3	2	75			
Pre-requisites	e	c and necessary exposure	e to set theory.				
	2. Basic Calculus						
	3. Real Analysis I						
Course		tions are introduced rigo		_			
Summary	0 1	uvalent sequential crit					
		Riemann) Integrable func					
	by the fundamental theorem of calculus connecting the two notions. The						
	course concludes with	h a discourse on series of	functions and	d various results			
	discussing the comp	atibility of the above the	ree notions w	ith the limiting			
	operations on series of	of functions.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Analyse and explain the concept of continuous functions and their properties on intervals, and apply the principles of uniform continuity.	An	С	Internal Exam/Assignment/ Seminar/ Viva/Report/ End Sem Exam				
CO2	Analyse the vitality of continuous functions when they are defined on intervals.	An	С	Internal Exam/Assignment/ Seminar/ Viva/Report/ End Sem Exam				
CO3	Apply the derivative and the Mean Value Theorem to solve problems and prove related theorems.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva/Report/ End Sem Exam				
# - Factu	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Textbook	 Introduction to Real Analysis, 4/e, Robert G Bartle, Donald R Sherbert John Wiley & Sons(2011) Calculus: Soo T Tan <i>Brooks/Cole</i>, <i>Cengage Learning</i> (2010) ISBN 978-04 534-46579-7 							
Module	Unit Content	Hrs (45+3)						
Ι	Module I (Text 1)							
	1 Section 5.1 – Continuous funct							
	2 Section 5.3 – Continuous funct	ions on intervals.						
	3 Section 5.4: Uniform continuity ((Up to 5.4.14) 14	Min.15					
	Proof of Weierstrass Approxin optional.							
II	Module II (Text	1)						
	4 Section 7.1: Riemann Integral	,						
	(7.1.7 is included in practicum))						
	5 Section 7.2: Riemann integrable		Min.15					
	additivity theorem and 7.2.6 is i	ncluded in practicum)						
	6 Section 7.3: Fundamental theorem	n of Calculus (Proof of						
	7.3.18 are included in practicum	1)						
III	Module III (Text 1	1)						
	7 Section 8.1: Pointwise and unife 8.1.6, 8.1.9 are included in practice							
	8 Section 8.2: Interchange of limits							
	Omit proof of 8.2.3, 8.2.4 for ex	ternal examination.						
	(8.2.1 is included in practicum))						
	9 Section 9.4: Series of functions u	p to 9.4.6 8	Min.20					
	(Problems to analyse the conve							
	formal definition as well as We	eierstrass M-test are						
IV	included in practicum) Module IV (Text 2							
1 V	10 Section 9.7: Power series –							
	convergence, Radius of converg	,						
	are included in the practicum)	9	Min.10					
	11 Section 9.7: Integration and diff	erentiation of power						
	series (Related problems are in							
	practicum)							
	12 Section 9.8: Taylor and Macla							
	Techniques for finding Taylor a	nd Maclaurin series.						
V	Module V							
	Practicum:							
	The goal is for the students to learn the f 15	• •						
	n 15 practicum sessions of two hours	•						
	group activities. The lecturer may as							
	discussions, overseeing class seminar							
	books for self-study and note preparation	on.						

1	Chapter 6: Section 6.1 – The Derivative – 6.1.1 to 6.1.7, Section 6.2- The Mean Value Theorem - 6.2.1 to 6.2.13	
2	Chapter 7: Example 7.1.7,Section 7.2.6 Proof of additivity theorem.	
3	11.1: Open and closed sets – definition, examples, properties.	
4	11.1: Characterization of open and closed sets.	
5	11.1: Construction of Cantor set, properties of Cantor set.	

Reference

- 1. Apostol, Tom M. Calculus, Volume 1. John Wiley & Sons, 1991.
- 2. Tom.M. Apostol, Mathematical Analysis, 2/e, Addison-Wesley, 2002.
- 3. Richard R Goldberg, Methods of Real Analysis, 2/e, Wiley, 2020
- 4. Raymond L Wilder, Introduction to the Foundations of Mathematics,2/e, John Wiley & Sons
- 5. Malik, Subhash Chandra, and Savita Arora. Mathematical analysis. New Age International, 1992.

*Optional topics are exempted for end semester examination

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	2	1	2	-	2	-	3	-	-
CO 2	2	2	2	1	2	-	2	-	3	-	-
CO 3	3	2	3	1	3	-	3	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	√	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	✓

Programme	B. Sc. Mathematics H	B. Sc. Mathematics Honours						
Course Code	MAT5CJ302							
Course Title	ABSTRACT ALGEBRA I							
Type of Course	Major	Major						
Semester	V							
Academic Level	300-399							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	Basic set theory, algo techniques etc.	ebra of Integers, operatior	ns on functions	s, basic proof				
Course Summary	This course explores the algebraic concepts of Binary Operations, Binary Structures, Groups, Rings, Integral Domains and Fields. We further study the Theory of Groups. Elementary properties, Subgroups, Finite Groups, Cyclic Groups, Groups of Permutations, Orbits, Cycles, Alternating Groups, Cosets and the Theorem of Lagrange are studied. Then we study mappings between groups or Homomorphisms. Finally, the Open-ended section points to Generating sets, Factor Groups and Field of Quotients of an Integral Domain.							

.

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Identify binary operations, isomorphic binary structures and groups	U	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO2	Analyse and classify subgroups and cyclic groups, and determine their properties using group theory.	An	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO3	Evaluate and apply theorems related to cosets, Lagrange's theorem, homomorphisms, rings, and fields to solve complex algebraic problems.	E	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
# - Fact	nember (R), Understand (U), Apply (Ap) ual Knowledge(F) Conceptual Knowledge edge (M)			

Text book		course in abstract algebra, Fraleigh, John B Seventh Editi ion India, 2003	on, Pearso	n	
le	Unit	Content	Hrs	Marks	
Module			(48+12)	Ext(70)	
Ι		Module I			
	1	Section 2- Binary Operations (2.1 to 2.10)			
	2	Section 2- Binary Operations (2.11 to 2.25)			
	3	Section 3- Isomorphic Binary Structures (3.1 to 3.11).			
	4	Section 3- Isomorphic Binary Structures (3.12 to 3.17)	12	Min.15	
	5	Section 4- Groups (4.1 to 4.14)			
	6	Section 4- Groups – Elementary Properties of Groups, Finite Groups and Group tables (4.15 onwards)			
П		Module II			
	7	Section 5- Subgroups (5.1 to 5.16)			
	8	Section 5 -Subgroup - Cyclic Subgroups (5.17 to 5.23)			
	9	Section 6 -Cyclic Groups (6.1 to 6.9) (Proof of Theorem 6.3 is optional)	14	Min.15	
	10	Section 6- Cyclic Groups (6.10 to 6.17) (Proof of Theorem 6.14 is optional).1	-		
	11	Section 8-Groups of Permutations (up to 8.6)			
	12	Section 8- Groups of Permutations (8.7 to 8.18)			
Ш		Module III			
	13	Section 9 - Orbits, Cycles, and the Alternating Groups (Up to 9.10)			
	14	Section 9 - Orbits, Cycles, and the Alternating Groups (9.11 to 9.21) (Proof 2 of theorem 9.15 is optional).	- 10 Min.1		
	15	Section 10- Cosets and the theorem of Lagrange (Up to 10.9)			
	16	Section 10- Cosets and the theorem of Lagrange (10.10 to 10.14)			

IV		Module IV		
	17	Section 13- Homomorphisms (13.1 to 13.10)		
	18	Section 13-Homomorphism (13.11 to 13.20)		
	19	Section 18-Rings and Fields (18.1 to 18.13)	12 Min.15	
	20	Section 18-Rings and Fields (18.14 to 18.18)		
	21	Section 19-Integral Domains (19.1 to 19.8)		
	22	Section 19-Integral Domains (19.9 to 19.15)		
V		Module V		-
		Generating Sets in Groups		
		Factor Groups	12	
		The Field of Quotients of an Integral Domain		

References

1. Herstein, Israel Nathan. Topics in algebra. John Wiley & Sons, 1991.

2. Gallian, Joseph. Contemporary abstract algebra. Chapman and Hall/CRC, 2021.

3. Wallace, David AR. Groups, rings and fields. Springer Science & Business Media, 2001

4. Reis, Clive. *Abstract algebra: an introduction to groups, rings and fields*. World Scientific Publishing Company, 2011.

5. Allan Clark, *Elements of Abstract Algebra*, Dover Publications, 1984

6. C Musili, Introduction to Rings and Modules, Narosa Publications, 2009

Suggested Programming Exercises for Open-Ended

- 1. Form congruence groups, their Cayley tables (Section 9.2, Ref (3)).
- Form symmetric groups of various orders, list the elements, find the power of some elements, find out the product of some of the elements. Find the order of the elements. Form a group table using conditionals and loops. (Section 9.3, Ref (3) or Ref (1)).
- 3. List S_3 . Find a subgroup from this group. How many distinct subgroups can be found from this group? List all of them.
- 4. Form the Dihedral group D_4 , check if it is abelian using is_abelian(). Conduct the same experiments as listing the elements ,finding the orders etc as above. (Section 9.4, Ref (3) or Ref (1)).
- 5. Test the command is normal () on a few subgroups of S_3 . (Ref (1)).
- 6. Create cyclic groups. (Section 9.5, Ref (3)).

- 7. Form finitely generated abelian groups. (Section 9.6, Ref (3)).
- 8. Form a subgroup of a group (say, S_3) (Section 9.8, Ref (3)).

References

- 1. Robert A. Beezer; Group Theory and SAGE: A Primer, http://people.reed. edu/~davidp/332/sage-group-theory.pdf
- 2. Group Theory and Sage SageMath tutorial https://doc.sagemath.org/html/ en/thematic_tutorials/group_theory.html
- 3. Ajit Kumar, Vikas Bist; Group Theory An Expedition with SageMath, Narosa Publishing House.
- 4. Thomas W. Judson, Robert A. Beezer; Abstract Algebra Theory and Applications with Sage Exercises for Abstract Algebra, http://abstract.ups.edu/download/ aata-20130816.pdf

*Optional topics are exempted for end semester examination.

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	-	2	-	-	-	2	-	-
CO 2	1	2	3	-	2	-	2	-	3	-	-
CO 3	0	1	2	3	2	-	3	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	~	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	~	\checkmark	\checkmark

Programme	B. Sc. Mathematics Honours								
Course Code	MAT5CJ303								
Course Title	COMPLEX ANALY	COMPLEX ANALYSIS I							
Type of Course	Major								
Semester	V								
Academic	300-399								
Level									
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours					
	4	4	-	60					
Pre-requisites	Basics of Real Numb	er System and Calculus.							
Course	This course begins w	ith the concepts of comp	olex numbers. co	omplex plane, polar					
Summary		mbers, powers and roc							
	functions including j	power functions and ntl	h root functions	. Then we discuss					
	limits, continuity, differentiability and analyticity of complex functions. Cauchy								
	Riemann equations an	nd Harmonic conjugates	are also studied	. Finally the course					
	discusses some sta	ndard complex functi	ons like Expo	onential functions,					
	Logarithmic function	s, Trigonometric and Hy	perbolic functio	ons.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Explain the properties and representations of complex numbers, including their polar form and operations.	U	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO2	Apply the principles of limits, continuity, and differentiability to complex functions and utilize the Cauchy-Riemann equations.	Ар	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO3	Evaluate and create complex exponential, logarithmic, trigonometric, and hyperbolic functions, understanding their properties and applications.	С	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
	member (R), Understand (U), Apply (Ap ctual Knowledge(F) Conceptual Knowle	•		

Knowledge (M)

Textbook	-	x Analysis (Third Edition): Dennis G. Zill & Patric D. Shan Learning, 2018.	ahan,	Jones &
Module	Unit	Hrs 60	External Marks (70)	
		Module I		
	1	Section 1.1-Complex Numbers and Their Properties		Min.15
Ŧ	2	Section 1.2-Complex Plane	10	
Ι	3	Section 1.3- Polar Form of Complex Numbers	13	
	4			
	5	Section 1.5 -Sets of Points in Complex Plane		
		Module II		
	6	Section 2.1 -Complex Functions		
	7	Section 2.2- Complex Functions as Mappings- up to and including Example 4.		Min.15
п	8	8 Section 2.4- Special Power Functions- The Power Function z^n (All the topics in 2.4.1)		
	9			
	10	z^n (Topics in 2.4.2, up to and including Example 5.)Section 2.4- Special Power Functions-Principal nth RootFunctions and Example 9.	-	
		Module III		
	11	Section 3.1- Limits and Continuity-Limits (All the topics in 3.1.1)	-	
	12	Section 3.1- Limits and Continuity-Continuity (Topics in 3.1.2, up to Example 7.)	_ 15	
	13	Section 3.1-Limits and Continuity-Continuity (Theorem 3.1.4 to up to and including a bounding property.		Min.20
III	14	Section 3.2- Differentiability and Analyticity- up to and including Example 2.		
	15	Section 3.2- Differentiability and Analyticity- All the topics after Example 2.		
	16	Section 3.3- Cauchy-Riemann Equations-up to and including Theorem 3.3.2		
	17	Section 3.3 - Cauchy Riemann Equations: -All the topics after Theorem 3.3.2.		
	18	Section 3.4 - Harmonic Functions	1	
		Module IV		
IV	19	Section 4.1 Exponential and Logarithmic Functions- Complex Exponential Function (Topics in 4.1.1 up to and	8	
		including Periodicity)		Min.15

		Section 4.1 Exponential and Logarithmic Functions-		
	20	Complex Logarithmic Function (Topics in 4.1.2 up to and		
		including Example 4)		
		Section 4.3 Trigonometric and Hyperbolic Functions-		
	21	Complex Trigonometric Functions (Topics in 4.3.1, up to		
		and excluding trigonometric mapping.)		
	22	Section 4.3 Trigonometric and Hyperbolic Functions-		
		Complex Hyperbolic Functions (All the topics in 4.3.2)		
		Module V		
\mathbf{V}		Linear Mappings, Reciprocal Functions	12	
		Branches, Branch Cuts and Points, Complex Powers		
		Inverse Trigonometric and Hyperbolic Functions.	1	

References

- 1. Brown, James Ward, and Ruel V. Churchill. Complex variables and applications. McGraw-Hill, 2009.
- 2. Stein, Elias M., and Rami Shakarchi. Complex analysis. Vol. 2. Princeton University Press, 2010.
- 3. Burckel, Robert B. An Introduction to Classical Complex Analysis: Vol. 1. Vol. 64. Birkhäuser, 2012
- 4. Hormander, Lars. An introduction to complex analysis in several variables. Elsevier, 1973.
- 5. Priestley, Hilary A. Introduction to complex analysis. OUP Oxford, 2003.
- 6. Silverman, Richard A. Introductory complex analysis. Courier Corporation, 2013
- 7. Bak, Joseph, Donald J. Newman, and Donald J. Newman. *Complex analysis*. Vol. 8. New York: Springer, 2010.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	-	-	3	-	-	-	2	-	-
CO 2	-	3	1	-	2	-	3	-	3	-	-
CO 3	1	0	3	-	2	-	3	-	3	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathematics H	Ionours				
Course Code	MAT6CJ304 / MAT8	MAT6CJ304 / MAT8MN304				
Course Title	COMPLEX ANALYSIS-II					
Type of Course	Major					
Semester	VI					
Academic	300-399					
Level						
	Credit	Lecture/Tutorial	Practicum	Total Hours		
Course Details		per week	per week			
Course Details	4	4	-	60		
	-	bers, Polar representation	s, Differentiab	ility and		
Pre-requisites	Analyticity.					
				• •		
C		Complex Analysis-I and	•	U 1		
Course	integrals, followed by Cauchy-Goursat Theorem. Independence of path, Cauchy's Integral formula, sequence and series of complex numbers are next					
Summary						
		owed by Taylor series, La		-		
	Residue Theorem. Ap	oplications of Residue the	orem are also	aiscussea.		

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply the principles of real and complex integrals, including the Cauchy-Goursat theorem	Ap	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO2	Analyse the independence of path and evaluate the Cauchy's integral formulas, along with understanding their consequences and applications.	An	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO3	Create and utilize Taylor and Laurent series, and apply the residue theorem to evaluate complex functions and integrals.	С	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
	member (R), Understand (U), Apply (Ap ctual Knowledge(F) Conceptual Knowle	•		
Know	ledge (M)			

Textbook Module	-	olex Analysis (Third Edition): Dennis G. Zill & Patric D. & Bartlett Learning, 2018. Content	Hrs (60)	External Marks
		Module I	(00)	(70)
	1			
I	2	Section 5.1-Real Integrals. Section 5.2-Complex Integrals-up to and including	_	
	2 Section 5.2-Complex Integrals-up to and including Example 2 3 Section 5.2- Complex Integrals- All the topics after Example 2			
			-	
				Min.15
-	4	Section 5.3- Cauchy- Goursat Theorem-up to and	12	
		including Example 4.		
	5	Section 5.3 -Cauchy- Goursat Theorem-All the topics		
		after		
		Example 4.		
		Module II		
	6	Section 5.4- Independence of Path		
	7 Consequences- Cauchy's Two I	Section 5.5 -Cauchy's Integral Formulas and Their		
		Consequences- Cauchy's Two Integral Formulas (All the		
		topics in 5.5.1)	10	
П		Section 5.5 -Cauchy's Integral Formulas and Their	12	Min.15
	8	Consequences- Some Consequences of the Integral		
		Formulas (All the topics in 5.5.2)	_	
	9	Section 6.1 -Sequences and Series- up to and including		1
		Example 4.		
	10 Section 6.1- Sequences and Series- All the topics after Example 4.			
		Module III		
		Section 6.2 -Taylor Series-up to and Excluding Theorem	-	
	11	6.2.4.		Min.15
		Section 6.2- Taylor Series-From Theorem 6.2.4 to	_	
	12	Example 3.		
	10	Section 6.3 -Laurent Series-up to and including Example		
III	13	1.	14	
	14	Section 6.3- Laurent Series- All the topics after Example		
	14	1(proof of Laurent's Theorem is optional)		
	15	Section 6.4 -Zeros and Poles- up to and including		
	15	Example 2.	_	
	16	Section 6.4- Zeros and Poles- All the topics after		
	10	Example 2.		
		Module IV	_	
	17	Section 6.5 -Residues and Residue Theorem-up to and		
		including Example 3.	-	
IV	18	Section 6.5 - Residues and Residue Theorem-All the	10	
		topics after Example 3.	-	
	19	Section 6.6- Some Consequences of the Residue Theorem- Evaluation of Real Trigonometric Functions		
	17	(up to and including example1 of 6.6.1)		

		Section 6.6 -Some Consequences of the Residue		Min.15
	20	Theorem- Evaluation of Real Improper Integrals (up to		
		and including Example 2)		
	- 21	Section 6.6 - Some Consequences of the Residue		
	21	Theorem- Theorem 6.6.1 and Example 3.		
	22	Section 6.6 -Some Consequences of the Residue		
	22	Theorem- Theorem 6.6.2 and Example 4.		
		Module V (Open Ended)		
X 7		Definite Integrals, Line Integrals in the Plane, Indented		
V		Contours	12	
		Integration along a Branch Cut, The Argument Principle		
		Rouche's Theorem and its applications		
Referen	ces			
	1	Brown, James Ward, and Ruel V. Churchill. Complex varia	ables ar	nd
		applications. McGraw-Hill, 2009.		
	2	Stein, Elias M., and Rami Shakarchi. Complex analysis. Vo	ol. 2. Pi	rinceton
		University Press, 2010.		
	3	Burckel, Robert B. An Introduction to Classical Complex A	Analysi	s: Vol. 1.
		Vol. 64. Burkhouse, 2012.		
	4	Hormander, Lars. An introduction to complex analysis in se	everal v	variables.
		Elsevier, 1973.		
	5	Priestley, Hilary A. Introduction to complex analysis. OUF		
	6	Silverman, Richard A. Introductory complex analysis. Cou	rier Co	rporation,
		2013.		
	7	Bak, Joseph, Donald J. Newman, and Donald J. Newman. <i>Comp</i> 8. New York: Springer, 2010.	olex ana	lysis. Vol.

*Optional topics are exempted for end semester examination.

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	1	-	3	-	3	-	3	-	-
CO 2	1	2	1	-	2	-	3	-	3	-	-
CO 3	1	2	1	-	3	-	3	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	\checkmark	\checkmark	\checkmark	✓	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours					
Course Code	MAT6CJ305 / N	MAT8MN305					
Course Title	ELEMENTA	ELEMENTARY NUMBER THEORY					
Type of Course	Major						
Semester	VI						
Academic Level	300-399	300-399					
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Arithmetic of	integers, basic set theory	and proof tec	chniques.			
Course Summary	Euclidean algor equations like a Arithmetic, disc Following that, theorem, and Fe	We start number theory with the division algorithm, g.c.d., and the Euclidean algorithm for computing it, essential for solving Diophantine equations like $ax + by = c$. We then prove the Fundamental Theorem of Arithmetic, discuss the infinitude of primes and the sieve of Eratosthenes. Following that, we cover Linear Congruences, the Chinese Remainder theorem, and Fermat's Little Theorem. Finally, we explore Wilson's Theorem, Euler's Phi Function, and Euler's Theorem.					

Course Outcomes:

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply the division algorithm and Euclidean algorithm to compute greatest common divisors (gcd) and solve related divisibility problems.		С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Solve Diophantine equations for integer solutions, deduce prime factorization through the fundamental theorem of arithmetic, and identify prime numbers using the sieve of Eratosthenes.		C	Internal Exam/ Assignment/ Seminar/Viv a/ End Sem Exam
CO3	Apply the properties of congruence and the Chinese Remainder Theorem to solve systems of linear congruences.		С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
# - Fa	ember (R), Understand (U), Apply (Ap), Anal ctual Knowledge(F) Conceptual Knowledge (ledge (M)	-		

Textbook	Elementary Number Theory, David Burton, M, Seventh Edition, Mcgraw – Hill (2007).						
Module	Unit	Content	Hrs (60)	External Marks (70)			
Ι		Module I					
	1	Section 2.2 The division algorithm (proof of theorem 2.1 omitted).					
		Section 2.3 The greatest common divisor - up to and including theorem 2.3 and its corollary.					
		Section 2.3 The greatest common divisor - All topics from definition 2.3 onwards.	12	Min.15			
	4	Section 2.4 The Euclidean algorithm -up to Theorem 2.7.					
	5	Section 2.4 The Euclidean algorithm - All topics from Theorem 2.7 onwards.					
II		Module II					
		Section 2.5 The Diophantine equation $ax + by = c$ up to and including Theorem 2.9.					
	7	Section 2.5 - All topics from Example 2.4 onwards.					
	8	Section 3.1 The fundamental theorem of arithmetic - up to Theorem 3.2.	11	20.45			
	9	Section 3.1 The fundamental theorem of arithmetic – All topics from Theorem 3.2 onwards.		Min.15			
	10	Section 3.2 The sieve of Eratosthenes (up to and including theorem 3.4 only)					
III		Module III					
	11	Section 4.2 Basic properties of congruence - up to Theorem 4.2.					
	12	Section 4.2 Basic properties of congruence - All topics from Theorem 4.2 onwards.					
		Section 4.4 Linear congruences and the Chinese remainder theorem - up to Theorem 4.8.					

	14 Section 4.4 Linear congruences and the Chinese remainder theorem - All Topics from Theorem 4.8 (proof of Theorem 4.8 omitted).	13	Min.15
	 15 Section 5.2 Fermat's little theorem and pseudo primes - up to Lemma. (omit a different proof for Fermat's theorem) 		
	16 Section 5.2 Fermat's little theorem and pseudo primesAll topics from Lemma onwards.		
IV	Module IV		
	¹⁷ Section 5.3 Wilson's theorem - Up to Theorem 5.5.		
	 ¹⁸ Section 5.3 Wilson's theorem - All topics from Theorem 5.5 onwards. 		
	¹⁹ Section 7.2 Euler's phi-function - up to Lemma.		
	²⁰ Section 7.2 Euler's phi-function - All Topics from Lemma onwards. (proof of Theorem 7.2 omitted).	12	Min.15
	21 Section 7.3 Euler's theorem. (Second proof of Euler's theorem omitted).		
	22 Section 7.4 Some properties of the phi-function (Proof of Theorem 7.8 omitted).		
V	Module V		
	Proof of Theorem 4.8. Chinese Remainder Theorem and remaining portions of Section 4.4	12	
	Section 6.1 The sum and the number of divisors Linear congruences and the Chinese remainder theorem.	12	
	Section 6.3 The Greatest Integer Function - up to Theorem 6.11.		
References 1. Rose	n, Kenneth H. <i>Elementary number theory</i> . London: Pearson Educ		11

3. Gehring, F. W., and P. R. Halmos. Graduate Texts in Mathematics, 1976.

4. Hsiung, C. Y. Elementary theory of numbers. World Scientific, 1992.

5. Hoffman P., *The man who loved only numbers: The story of Paul Erdös and the search for mathematical truth*, Little Brown & Company, 1999.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of	COs	with	PSOs	and	POs:	
------------	-----	------	-------------	-----	------	--

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	1	-	-	3	-	3	-	3	-	-
CO 2	1	1	-	-	3	-	3	-	3	-	-
CO 3	-	-	1	-	3	-	3	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathema	atics Honours						
Course Code	MAT6CJ306 / MAT8MN306							
Course Title	METHODS O	F DIFFERENTIAL EQUA	ATIONS					
Type of Course	Major							
Semester	VI	VI						
Academic	300-399	300-399						
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Foundations of	basic calculus (0-99 level)						
Course	The course enh	nances the skill to solve or	dinary differen	tial equation using				
Summary		specific methods analytically and computationally for first and higher order						
	differential equa	ations.						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Classify and solve first order differential equation by applying appropriate methods	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO2	Apply different methods to solve higher order homogeneous and non- homogeneous linear differential equations with constant coefficients	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO3	Use Laplace transform and inverse Laplace transform to solve linear differential equations	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive 							

Knowledge (M)

Textbook	Dennis G. Zill , A First Course in Differential Equations with Modeling Applications 10 th Edn, Cengage Learning (2012) ISBN-13 978-1111827052					
Module	Un	Content	Hrs	Marks		
	it		(60)	Ext: 70		
Ι	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array} $	Module IQuick review of Introduction to differential equations (Definitions only)2.1.1-Direction Fields2.1.2 - Autonomous First-Order DEs2.2 - Separable Equations2.3 - Linear Equations2.4- Exact Equations2.5- Solutions by SubstitutionsProblems from the above sectionsModule II	14	Min.15		
Π	8 9 10 11 12	 4.1.1 Initial-Value and Boundary-Value Problems 4.1.2 Homogeneous Equations (proof of Theorems 4.1.2 and 4.1.5 are optional) 4.1.3 Nonhomogeneous Equations 4.2 Reduction of Order 4.3 Homogeneous Linear Equations with Constant Coefficients 	12	Min.15		
III	13 14 15 16 17 18 19	Module III4.4 -Undetermined Coefficients—Superposition Approach (up to and including Example 9)4.5 - Undetermined Coefficients—Annihilator Approach (up to and including Example 3)4.5 - Undetermined Coefficients—Annihilator Approach (all the topics after Example 3)4.6 - Variation of Parameters4.7 - Cauchy-Euler Equation (up to and including Example 4)4.7 - Cauchy-Euler Equation (all the topics after Example 4)4.9 - Solving Systems of Linear DEs by Elimination	14	Min.20		
IV	20 21 22	Module IV 7.1 Definition of the Laplace Transforms (proof of Theorems 7.1.2 and 7.1.3 are optional) 7.2.1 Inverse Transforms 7.2.2 Transforms of Derivatives	8	Min.10		
V	IVP like (Ins	Module Vstering differential equation using softwareand BVP Problem-solving using mathematical softwareSage/Python/ Mathematica/Matlab/ Maple/Scilab etcstructor may choose any software appropriately)gestions:Plotting solution curves -2 hrs	12			

	 Solve first order initial value problems -2 hrs Solve second order initial value problems -2 hrs Plot Laplace transform of given function -2 hrs find Laplace transform and inverse Laplace transform -2 hrs Solve the initial value problem using Laplace transform -2 hrs 						
References							
	mmons and S. G. Krantz, Differential Equations: Theory, Technique (2000)	ue, and F	ractice,				
	v Hill (2006), ISBN-13. 978-0072863154						
	oddington, An Introduction to Ordinary Differential Equations, Pre	entice Ha	ll India				
(2009).	ISBN: 9788120303614						
3. E. Boyc	e, Richard C. Diprima, Douglas B Meade, Elementary Differentia	al Equati	ons and				
Bounda	ry Value Problems, 11 Edn. William John Wiely & Sons (2017) IS	BN: 111	9169879				
4. William	F. Trench, Elementary Differential Equations with Boundary Value	ue Proble	ems,				
S.Chanc	l (G/L) & Company Ltd (2013) ISBN 13: 9780534368418.						
	ss, Differential Equations, 3rd edition, Wiley India, (2007) ISBN-	13.978-					
8126515	-						
	L. Abell, James P. Braselton, Differential Equations with Mathema	atica, 5th	edn.				
	Science Publishing Co Inc (2022), ISBN: 9780128241608		-				
	Amit Saha, Doing Math with Python", No Starch Press, US . (2015), ISBN 13 978-						
	1593276409						
L	l topics are exempted for end semester examination.						

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	-	3	-	3	-	-
CO 2	2	3	1	2	3	-	3	-	3	-	-
CO 3	2	1	3	3	3	-	3	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT7CJ401						
Course Title	MATHEMATICAL ANALYSIS						
Type of Course	Major						
Semester	VII						
Academic	400-499						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	quisites 1. Mathematical Logic and necessary exposure to set theory.						
r ie requisites	2. Basic Calculus						
	3. Real Analysis I, Real Analysis II						
Course	The topology of the real line is explored in detail, as is necessary later for an						
Summary	in-depth understandi	ng of the theory of real	the theory of real functions. Limits, Continuity &				
	Differentiation are rigorously covered. Riemann-Stieltjes Integration is						
	introduced as a generalisation of the Riemann integration covered in earlier						
	semesters, enabling the student to view summation of series and integration as						
	extensions of the same concept. After a discourse on series of functions and						
	various results discussing the compatibility of the above three notions with the						
	limiting operations on series of functions, the course concludes with a						
	presentation of the famous Stone-Weierstrass' Theorem.						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Analyse and differentiate between finite, countable, and uncountable sets, and apply these concepts to problems in R	An	C	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam				
CO2	Evaluate the properties of compact, perfect, and connected sets in the context of metric spaces.	Е	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam				
CO3	Synthesize the principles of continuity, differentiability, integrability and convergence of sequences and series including the application of the Mean Value Theorem and L'Hospital's Rule, to solve complex problems involving real-valued and vector-valued functions.	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam				
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
	Knowledge (M)							

Textbook	Principles of Mathematical Analysis, Walter Rudin,, (3/e), McGraw Hill Inc(2013)					
Module	Unit	Content	Hrs (45+30)	Externa Marks (70)		
Ι	Module I					
	1	Chapter 2 – Finite, Countable & Uncountable Sets – 2.1 to 2.14				
	2	Chapter 2 – Metric Spaces – 2.15 to 2.24	_			
	3	Chapter 2 – Metric Spaces – 2.25 to 2.30	13	Min.15		
	4	Chapter 2 – Compact Sets – 2.31 to 2.42				
	5	Chapter 2 – Perfect Sets – 2.43 to 2.44				
	6	Chapter 2 – Connected Sets – 2.45 to 2.47	-			
Π		Module II				
	7	Chapter 4 – Limits of Functions and Continuous Functions – 4.1 to 4.12				
	8	Chapter 4 – Continuity and Compactness – 4.13 to 4.21				
	9	Chapter 4 - Continuity and Connectedness – 4.22 to 4.24]			
	10	Chapter 4 – Discontinuities and Monotonic Functions – 4.25 to 4.30	16	Min.20		
	11	Chapter 5 – The Derivative – 5.1 to 5.6				
	12	Chapter 5 – Mean Value Theorems – 5.7 to 5.12	_			
	13	Chapter 5 – L'Hospital's rule, Higher Derivatives & Taylor's Theorem, Differentiation of Vector Valued Functions – 5.13 to 5.19 (proof of theorem				
		5.13 and theorem 5.15 are optional)				
III	Module III					
	14	Chapter 6 – Definition and Existence – 6.1 to 6.6	-			
	15	Chapter 6 – Definition and Existence – 6.6 to 6.11	-			
	16	Chapter 6 – Properties – 6.12 to 6.13	-			
	17	Chapter 6 – Properties – 6.14 to 6.19 (proof of theorem 6.19 is optional)	9	Min.15		
	18	Chapter 6 – Integration & Differentiation – 6.20 to 6.22				
IV		Module IV				
	19	Chapter 7 – Discussion of Main Problem - 7.1 to 7.3				
	20	Chapter 7 – Discussion of Main Problem - 7.4 to 7.6	7	Min.10		
	21 22	Chapter 7 –Uniform Convergence – 7.7-7.10 Chapter 7 –Uniform Convergence & Continuity – 7.11 to 7.13				
V	Module V			-		
•	Practicum :					
	The goa	al is for the students to learn the following selected via self-study and group activities. The lecturer may				
	-	y running and overseeing group discussions and class				

 seminars and referring library books for self-study and note preparation. 1 Chapter 3 – Convergent Sequences, Subsequences 2 Chapter 3 – Cauchy Sequences, Upper and Lower Limits 3 Chapter 3 – Some Special Sequences, Series 4 Chapter 3 – Series of Non-Negative Terms, The Root and Ratio Tests 5 Chapter 3 – Power Series, Absolute Convergence 6 Chapter 3 – Addition and Multiplication of Series, Rearrangements. 7 Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.34 8 Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.27 9 Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.18 10 Chapter 7 – Equicontinuity and Stone-Weierstrass Theorem – 7.19 to 7.27 	aomina	rs and referring library books for salf study and note					
1 Chapter 3 – Convergent Sequences, Subsequences 2 Chapter 3 – Cauchy Sequences, Upper and Lower Limits 3 Chapter 3 – Some Special Sequences, Series 4 Chapter 3 – Series of Non-Negative Terms, The Root and Ratio Tests 5 Chapter 3 – Power Series, Absolute Convergence 6 Chapter 3 – Addition and Multiplication of Series, Rearrangements. 7 Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.34 8 Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.27 9 Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.18 10 Chapter 7 – Equicontinuity and Stone-Weierstrass							
2 Chapter 3 – Cauchy Sequences, Upper and Lower Limits 3 Chapter 3 – Some Special Sequences, Series 4 Chapter 3 – Series of Non-Negative Terms, The Root and Ratio Tests 5 Chapter 3 – Power Series, Absolute Convergence 6 Chapter 3 – Addition and Multiplication of Series, Rearrangements. 7 Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.34 8 Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.27 9 Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.18 10 Chapter 7 – Equicontinuity and Stone-Weierstrass	prepara						
Limits3Chapter 3 – Some Special Sequences, Series4Chapter 3 – Series of Non-Negative Terms, The Root and Ratio Tests5Chapter 3 – Power Series, Absolute Convergence6Chapter 3 – Addition and Multiplication of Series, Rearrangements.7Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.348Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.279Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.1810Chapter 7 –Equicontinuity and Stone-Weierstrass	1	Chapter 3 – Convergent Sequences, Subsequences					
3Chapter 3 – Some Special Sequences, Series4Chapter 3 – Series of Non-Negative Terms, The Root and Ratio Tests5Chapter 3 – Power Series, Absolute Convergence6Chapter 3 – Addition and Multiplication of Series, Rearrangements.7Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.348Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.279Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.1810Chapter 7 –Equicontinuity and Stone-Weierstrass	2	Chapter 3 – Cauchy Sequences, Upper and Lower					
 4 Chapter 3 – Series of Non-Negative Terms, The Root and Ratio Tests 5 Chapter 3 – Power Series, Absolute Convergence 6 Chapter 3 – Addition and Multiplication of Series, Rearrangements. 7 Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.34 8 Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.27 9 Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.18 10 Chapter 7 – Equicontinuity and Stone-Weierstrass 		Limits					
Root and Ratio Tests5Chapter 3 – Power Series, Absolute Convergence6Chapter 3 – Addition and Multiplication of Series, Rearrangements.7Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.348Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.279Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.1810Chapter 7 –Equicontinuity and Stone-Weierstrass	3	Chapter 3 – Some Special Sequences, Series					
5Chapter 3 – Power Series, Absolute Convergence6Chapter 3 – Addition and Multiplication of Series, Rearrangements.7Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.348Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.279Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.1810Chapter 7 –Equicontinuity and Stone-Weierstrass	4	Chapter 3 – Series of Non-Negative Terms, The					
6Chapter 3 – Addition and Multiplication of Series, Rearrangements.7Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.348Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.279Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.1810Chapter 7 –Equicontinuity and Stone-Weierstrass		Root and Ratio Tests					
Rearrangements.7Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.348Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.279Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.1810Chapter 7 –Equicontinuity and Stone-Weierstrass	5	Chapter 3 – Power Series, Absolute Convergence					
 7 Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.34 8 Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.27 9 Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.18 10 Chapter 7 –Equicontinuity and Stone-Weierstrass 	6	Chapter 3 – Addition and Multiplication of Series,					
4.32 to 4.348Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.279Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.1810Chapter 7 –Equicontinuity and Stone-Weierstrass		Rearrangements.					
 8 Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.27 9 Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.18 10 Chapter 7 –Equicontinuity and Stone-Weierstrass 	7	Chapter 4 – Infinite Limits & Limits at Infinity –					
and Rectifiable curves - 6.23 to 6.279Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.1810Chapter 7 –Equicontinuity and Stone-Weierstrass		4.32 to 4.34					
 9 Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.18 10 Chapter 7 – Equicontinuity and Stone-Weierstrass 	8	Chapter 6 – Integration of Vector-valued Functions					
Differentiation – 7.16 to 7.1810Chapter 7 –Equicontinuity and Stone-Weierstrass		and Rectifiable curves - 6.23 to 6.27					
10 Chapter 7 – Equicontinuity and Stone-Weierstrass	9	Chapter 7 – Uniform Convergence, Integration and					
		Differentiation -7.16 to 7.18					
Theorem -7.19 to 7.27	10	Chapter 7 – Equicontinuity and Stone-Weierstrass					
		Theorem – 7.19 to 7.27					

References

- 1. Mathematical Analysis, T. M. Apostol, (2nd Edn.); Narosa; 2002.
- 2. Introduction to Real Analysis, R. G. Bartle and D.R. Sherbert:; John Wiley Bros; 1982.
- 3. Real Analysis- a first course, R. A. Gordon:(2nd Edn.); Pearson; 2009.
- 4. Analysis-I, H. Amann and J. Escher, Birkhuser, 2006
- 5. The way of Analysis, Robert Strichartz, (R/e), Jones and Bartlett Mathematics (2000)
- 6. A first course in Real Analysis, M. H. Protter and C. B. Moray, Springer Verlag UTM (1977)

*Optional topics are exempted for end semester examination

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	-	3	-	3	-	3	-	-
CO 2	2	3	2	-	3	-	3	-	3	-	-
CO 3	3	3	3	1	3	-	3	-	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	~	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	\checkmark	✓
CO 3	\checkmark	\checkmark	~	\checkmark	\checkmark

Programme	B. Sc. Mathematics Honours							
Course Code	MAT7CJ402							
Course Title	GENERAL TOPOLOGY							
Type of Course	Major	Major						
Semester	VII							
Academic	400-499							
Level								
Course Details	Credit Lecture/Tutorial Practicum Total Hours							
		per week	per week					
	4	3	2	75				
Pre-requisites	5	ic and necessary exposure	e to set theory.					
	2. Basic Calculus	1 4 1 1 1 1						
	3. Real Analysis I, R							
Course	5 0	al topology is introduced		•				
Summary		of metric spaces. Basic c						
	interiors, closures,	boundaries, neighbourh	oods, bases a	nd sub-bases are				
	introduced. After a	discussion of continuity	and related to	pics, the universal				
	properties of strong	g and weak topologies	s are discuss	ed. Compactness,				
	connectedness, and various countability axioms are studied in some detail. After							
	a detailed study of th	a detailed study of the hierarchy of separation axioms and their interplay with						
	other properties such	as compactness, the cou	rse concludes v	with a presentation				
	of the famous Urysol	nn & Tietze characterisati	ions of normali	ty.				

Course Outcomes (CO):

	Level*	Knowledge Category#	Evaluation Tools used
Classify topological spaces, bases, and subspaces, and apply these concepts to identify examples of different topological structures.	Ар	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
Analyse and evaluate closed sets, interior points, and accumulation points within topological spaces, and explain the concepts of continuity and related topological properties.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
Synthesize the concepts of connectedness, separation axioms, and compactness to determine specific topological properties of spaces and analyse their applications in solving problems related to paths and separation.	E	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
al Knowledge(F) Conceptual Kno			
	 concepts to identify examples of different topological structures. Analyse and evaluate closed sets, interior points, and accumulation points within topological spaces, and explain the concepts of continuity and related topological properties. Synthesize the concepts of connectedness, separation axioms, and compactness to determine specific topological properties of spaces and analyse their applications in solving problems related to paths and separation. 	concepts to identify examples of different topological structures.Analyse and evaluate closed sets, interior points, and accumulation points within topological spaces, and explain the concepts of continuity and related topological properties.AnSynthesize the concepts of connectedness, separation axioms, and compactness to determine specific topological properties of spaces and analyse their applications in solving problems related to paths and separation.Eember (R), Understand (U), Apply (Ap), Analyse al Knowledge(F) Conceptual Knowledge (C) Pr	concepts to identify examples of different topological structures.Analyse and evaluate closed sets, interior points, and accumulation points within topological spaces, and explain the concepts of continuity and related topological properties.AnPSynthesize the concepts of connectedness, separation axioms, and compactness to determine specific topological properties of spaces and analyse their applications in solving problems related to paths and separation.ECcomber (R), Understand (U), Apply (Ap), Analyse (An), Evaluate al Knowledge(F) Conceptual Knowledge (C) Procedural KnowledgeEC

Textbook	Publis	uction to General Topology, K. D. Joshi,, New Age hers, 1983.	T	ſ
Module	Unit	Content	Hrs (45+30)	External Marks (70)
Ι		Module I		
	1	Chapter 4 – Section 1: Definition of Topological Space		
	2	Chapter 4 – Section 2: Examples of Topological Spaces		
	3	Chapter 4 – Section 3: Bases and Sub-bases – 3.1 to 3.7	12	Min.15
	4	Chapter 4 – Section 3: Bases and Sub-bases – 3.8 to 3.10		
	5	Chapter 4 – Section 4: Subspaces – 4.1 to 4.6		
Π		Module II		
	6	Chapter 5 – Section 1: Closed Sets and Closure (Proof of Theorem 1.5 is optional)		
	7	Chapter 5 – Section 2: Neighbourhoods, Interior and Accumulation Points – 2.1 to 2.8		
	8	Chapter 5 – Section 2: Neighbourhoods, Interior and Accumulation Points –2.9 to 2.10 and 2.13	10	Min.15
	9	Chapter 5 – Section 3: Continuity and Related Concepts – 3.1 to 3.6		
	10	Chapter 5 – Section 3: Continuity and Related Concepts – 3.7 to 3.11		
III		Module III		
	11	Chapter 5 – Section 4: Making Functions		
		Continuous, Quotient Spaces – 4.1 to 4.7		
	12	Chapter 5 – Making Functions Continuous,		
		Quotient Spaces -4.8 to 4.12		
	13	Chapter 6 – Section 1: Smallness Conditions on a	12	Min.15
		Space – 1.1 to 1.9	-	
	14	Chapter 6 – Section 1: Smallness Conditions on a Space – 1.10 to 1.18		
	15	Chapter 6 – Section 2: Connectedness – 2.1 to 2.6 (Proof of Theorem 2.5 is optional)		
	16	Chapter 6 – Connectedness – 2.7 to 2.15		
IV		Module IV	-	
	17	Chapter 6 – Section 3: Local Connectedness and Paths – 3.1 to 3.8		
	18	Chapter 7 – Hierarchy of Separation Axioms - 1.1 to 1.6.		
	19	Chapter 7 – Hierarchy of Separation Axioms - 1.7 to 1.12	11	Min.15
	20	Chapter 7 – Hierarchy of Separation Axioms - 1.13 to 1.17		
	21	Chapter 7 – Section 2: Compactness and Separation Axioms - 2.1 to 2.6		

Axioms- 2.7 to 2.10						
V Module V						
acticum Practicum:						
The goal is for the students to learn the following	selected					
topics in 10 practicum sessions of hours each via s	elf-study					
and group activities. The lecturer may assist by runni	ng group					
discussions, supervising class seminars and referrin	ig library					
books for self-study and note preparation.						
1 Chapter 1 - Logical Warm-up						
2 Chapter 2 – Preliminaries						
3 Chapter 3 – Motivation for Topology						
4 Chapter 6 - Connectedness: Theorem 2.5 and its pro-	Chapter 6 - Connectedness: Theorem 2.5 and its proof					
5 Chapter 6 - Local connectedness and Paths - 3.9 to 3	Chapter 6 - Local connectedness and Paths - 3.9 to 3.11 30					
6 Chapter 7 - Compactness and Separation Axioms - 2	Chapter 7 - Compactness and Separation Axioms - 2.11 to					
2.16						
7 Chapter 7 – Section 3: Urysohn Characterisation of	Chapter 7 – Section 3: Urysohn Characterisation of					
Normality -3.1 to 3.4						
8 Chapter 7 – Section 3: Urysohn Characterisation of						
Normality - 3.5 to 3.6						
	Chapter 7 – Section 4: Tietze Characterisation of Normality -					
	4.1 to 4.5					
10 Chapter 7 – Section 4: Tietze Characterisation of Nor	rmality -					
4.6 to 4.8						

- 1. Topology, J. R. Munkres, Prentice Hall of India, 2000.
- 2. General Topology, S. Willard, Addison Wesley Pub. Company, 1976.
- 3. General Topology, J. L. Kelley, D. van Nostrand, 1955.
- 4. Introduction to Topology and Modern Analysis, G. F. Simmons, McGraw-Hill, 1963.

5. Topology, James Dugundji, Prentice Hall of India, 1975.

*Optional topics are exempted for end semester examination.

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

			1			1	1				
	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	-	3	-	3	-	3	-	-
CO 2	3	2	2	1	3	-	3	-	3	-	-
CO 3	3	3	3	2	3	-	3	-	3	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	~	~	\checkmark
CO 2	~	\checkmark	\checkmark	>	✓
CO 3	\checkmark	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics H	Ionours		
Course Code	MAT7CJ403			
Course Title	ABSTRACT ALGE	BRA II		
Type of Course	Major			
Semester	VII			
Academic	400-499			
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours
		per week	per week	
	4	3	2	75
Pre-requisites	 Mathematical Logi First Course on Gr 	ic and necessary exposure oup Theory	e to set theory.	
Course Summary	introductory courses. 7 products and quotient g Generated Abelian Gr explored in order to cor groups. After an introd group actions are intro classifying non-Abelia	heory is taken upon from v The basic constructions in groups are introduced. The F oups is introduced (withou npare the challenges in the t uctory delving into normal roduced and Sylow Theor n groups. The course conclu- neir factorisation, paving the vanced courses.	group theory - Fundamental Th at proof) and t heory of Abelia and subnormal by discussed in udes with a bas	- those of direct eorem of Finitely he consequences in vs non-Abelian series of groups, in the context of sic discussion on

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply the concept of direct products of groups and factor groups to construct new groups from existing ones.	Ар	Р	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
CO2	Analyse and evaluate the isomorphism theorems, series of groups, and Sylow theorems to explain the structural properties and classifications of groups.	Ε	С	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of rings of polynomials, factorization of polynomials, and ideal structures within rings and fields, with a focus on homomorphisms and factor rings.	E	Р	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
# - Fact	ember (R), Understand (U), Appl ual Knowledge(F) Conceptual Kr gnitive Knowledge (M)			

Textbook		st Course in Abstract Algebra, J. B. Fraleigh, 7 th E ation Limited, 2014.	dition, Pea	rson
Module	Unit	Content	Hrs (45+30)	External Marks (70)
I		Module I		
	1	Section 11 – Direct Products of Groups (11.1 to 11.11)	•	
	2	Section 11 – Finitely Generated Abelian Groups (11.12 to 11.17)		20. 15
	4	Section 14 – Factor Groups	11	Min.15
	5	Section 15 – Factor Group Computations (15.1 to 15.13)		
	6	Section 15 – Simple Groups, The Centre and Commutator Subgroups (15.14 to 15.21).		
П		Module II		
		Pre-requisites: Sections 16 and 17 of Practicum)		
	7	Section 34 – Isomorphism Theorems		
	8	Section 35 – Series of Groups - 35.1 to 35.19 (Proofs of Zassenhaus Lemma and Schreier Theorem are optional)		
	9	Section 36 – Sylow Theorems (36.1 to 36.4)	14	Min.20
	10	Section 36 – Sylow Theorems (36.5 to 36.13).		
	11	Section 37 – Applications of the Sylow Theory		
		(37.1 to 37.6)		
	12	Section 37 – Further Applications (37.7 to 37.15)		
III		Module III		
	13	Section 22 – Rings of Polynomials – (22.1 to 22.3) (proof of Theorem 22.2 is optional)	11	Min.15
	14	Section 22 – The Evaluation Homomorphisms (22.4 to 22.11)		
	15	Section 23 – Factorisation of Polynomials over a Field (23.1 to 23.6)		

		1		
	16	Section 23 – Irreducible Polynomials (23.7 to 23.21)		
	17	Section 24 – Non-commutative Examples. (24.1 to 24.3)		
	18	Section 24 – Non-commutative Examples		
		(24.4 to 24.10)		
IV		Module IV		
	19	Section 26 – Homomorphism and Factor Rings	•	
		(26.1 to 26.6).		
	20	Section 26 – Factor Rings (26.7 to 26.19)	8	Min.10
	21	Section 27 – Prime and Maximal Ideals		
		(27.1 to 27.20).		
	22	Section 27 – Ideal Structure in F[x] (27.21 to 27.27)		
V		Module V		-
	Practio			
	-	al is for the students to learn the following selected		
	-	in 5 practicum sessions of six hours each via self-		
	-	and group activities. The lecturer may assist by		
		g group discussions, supervising class seminars and ing library books for self-study and note preparation.		
1		12 - Plane isometries		
2		116 – Group Action on a Set	30	
3		n 17 – Application of G-sets to Counting		
4		n 21 – The Field of Quotients of an Integral Domain		
· ·		n 35 - Series of Groups - Ascending central series -		
		to 35.21		
5		n 39 – Free Groups		
Reference		•		
1. Ab	stract Al	gebra, Dummitt and Foote, Wiley India, 2011.		
		ary Abstract Algebra, Joseph A. Gallian, CRC Press,	1986.	
	-	lgebra, I. N. Herstein, John Wiley and Sons, 2006.		
	-	W. Hungerford, Springer-Verlag, 1987.		
	-	icheal Artin, Birkhauser, 2011		
	-	erge Lang, Springer, 2002.		
		Higher Algebra, J G Chakravorthy and P R Gosh, Koll	kata U N D	hur, 2014
,		89380673059) Programming Exercises for Practicum:		
	00		ita aparta (a	
	-	ruence groups Z ₃ , Z ₂ . Verify that $Z_3 \times Z_2 \cong Z_6$. Form	its cosets (S	section 9.11,
ĸe	f (3))			

- 2. Find the centre of the dihedral group. (Section 9.12, Ref (3))
- 3. For an element from the dihedral group, find its stabilizer. (Section 9.12, Ref (3))
- Find the conjugacy classes of an element from the dihedral group. (Section 9.12, Ref (3))
- 5. Take a subgroup (say H) of S_3 . List the conjugacy classes using the command conjugacy classes subgroups (). Can you find out all the subgroups using these conjugacy classes? (Ref (1) or Section 9.12, Ref (3))
- 6. Find Sylow-2-subgroups and Sylow-3-subgroups or D_{18} (Section 9.13, Ref (3))

References

1. Robert A. Beezer; Group Theory and SAGE: A Primer, http://people.reed. edu/~davidp/332/sage-group-theory.pdf

2. Group Theory and Sage - SageMath tutorial https://doc.sagemath.org/html/ en/thematic_tutorials/group_theory.html

3. Ajit Kumar, Vikas Bist; Group Theory An Expedition with SageMath, Narosa Publishing House.

4. Thomas W. Judson, Robert A. Beezer; Abstract Algebra Theory and Applications with Sage Exercises for Abstract Algebra, http://abstract.ups.edu/download/ aata-20130816.pdf

*Optional topics are exempted for end semester examination.

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	-	3	-	2	-	1
CO 2	2	3	1	2	3	-	3	-	3	-	2
CO 3	2	1	3	3	3	-	3	-	3	-	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	~	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	\checkmark	✓
CO 3	\checkmark	\checkmark	~	\checkmark	\checkmark

Programme	B. Sc. Mathematics H	Ionours				
Course Code	MAT7CJ404					
Course Title	LINEAR ALGEBRA	A				
Type of Course	Major					
Semester	VII					
Academic Level	400-499					
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	3	2	75		
Pre-requisites	0	ic and necessary exposure	e to set theory.			
	2. Matrices and Deter					
	3. Systems of Linear	Equations and their soluti	ions			
Course	-	e abstract are introduce				
Summary		are preserving maps bet		-		
		s as matrices is discussed	0			
	-	or space are studied in so		-		
	-	transformation is introduc				
		on to spectral theory				
	introducing characteristic values and vectors. After an extended discussion					
	leading up to the characterisation of diagonalisable and triangulable operators,					
	•	position of a linear oper				
	ends with a short disc	cussion of inner products	and inner prod	luct spaces.		

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse and apply the concepts of vector spaces, subspaces, and bases to solve problems involving linear independence and dimensionality.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Evaluate the properties of linear transformations and their algebraic representations using matrices.	Е	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of linear functionals, the double dual space, and the transpose of linear transformations to develop advanced topics in linear algebra and apply them to canonical forms	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
	ember (R), Understand (U), Apply al Knowledge(F) Conceptual Kno dge (M)			

Module	Unit	of India, 1991. Content	Hrs (45+30)	Externa Marks (70)
Ι		Module I		
	1	Section 2.1 – Vector Spaces		
	2	Section 2.2 – Subspaces		
	3	Section 2.3 – Bases and Dimension – up to Theorem 5		Min.15
	4	Section 2.3 – Bases and Dimension – rest of the section starting from Theorem 5	12	
	5	Section 2.4 – Coordinates – up to and including Theorem 7	-	
	6	Section 2.4 – Coordinates – rest of the section	_	
П	0	Module II		+
11	7		-	
		Section 3.1 – Linear Transformations – upto and including Example 7		
	8	Section 3.1 – Linear Transformations – rest of the section.		Min.15
	9	Section 3.2 – The Algebra of Linear Transformations – up to and including Theorem 5	11	
	10	Section 3.2 – The Algebra of Linear	-	
		Transformations – rest of the section	_	
	11	Section 3.3 – Isomorphism	_	
	12	Section 3.4 – Representation of Transformations		
		by Matrices – up to and including Example 15		
III		Module III	_	
	13	Section 3.4 – Representation of Transformations		
		by Matrices – rest of the section	_	
	14	Section 3.5 – Linear Functionals – upto and		N.C. 1.
		including Example 22.	_	Min.15
	15	Section 3.5 – Linear Functionals – rest of the		
	1.5	section.	11	
	16	Section 3.6 – The Double Dual – upto and	11	
	17	including Theorem 18.	4	
	17	Section 3.6 – The Double Dual – the rest of the section		
	10		-	
	18	Section 3.7 – The Transpose of a Linear		
	19	Transformation – up to and including Theorem 22	-	
	19	Section 3.7 – The Transpose of a Linear Transformation – rest of the section.		
IV		Module IV		
T A	20	Section 6.1 and 6.2 – Introduction and	-	
	20	Characteristic Values		Min.15
	21		11	14111.13
	21	Section 6.3 – Annihilating Polynomials (Proof of Theorem 4 omitted)		
	22	Section 6.4 – Invariant Subspaces.	1	

7		Module V		
	Practi	cum		
	The go			
	topics			
	self-s	tudy and group activities. The lecturer may assist by		
	runni	ng group discussions, supervising class seminars and		
	referring library books for self-study and note preparations.		30	
	note p			
	1	Section 1.3 – Matrices and Elementary Row		
		Operations		
	2	Section 1.4 – Row Reduced Echelon Matrices		
	3	Section 1.5 – Matrix Multiplication		
	4	Section 1.6 – Invertible Matrices		
	5	Section 6.4 – Triangulation and Diagonalisation		
	6	Section 6.6 – Direct-sum Decompositions		
	7	Section 6.7 – Invariant Direct Sums		
	8	Section 8.1 – Inner Products		
	9	Section 8.2 – Inner Product Spaces		
	10	Section 6.8 – The Primary Decomposition		
		Theorem		
References	2	· · · · · · · · · · · · · · · · · · ·		

- 2. Linear Algebra, S. Lang, Addison Wesley Pub Company, 1972.
- Topics in Algebra, I. N. Herstein, John Wiley & Sons, 2006.
 Linear Algebra, R. R. Stoll & E. T. Wong, Academic Press International Edition, 1968.

Suggested Programming Exercises for Practicuum :

- 1. Form a four-dimensional vector space over Q. Take two vectors from this, find its span. (Chapter VS, Ref (1))
- Find basis of the vector subspace found in the above question. (Chapter VS, Ref (1))
- 3. Take some elements from this vector space, test for linear independence. (Chapter V Section LI, Ref (1))
- Form two vector spaces over Q. Define symbolic linear transformations between them, find the image of selected elements under it. (Chapter LT, Ref (1))
- 5. Define linear transformations (LT) from matrices. (Chapter LT, Ref (1))
- 6. Check if linear transformation is injective (Section ILT, Ref (1))
- Define two LT, add them. Find the individual matrices of these with respect to certain bases. Verify that the matrix of the sum of LT is the sum of matrices of individual LT .(Section OLT, , Ref (1)))
- 8. Find the kernel of an LT, find its nullitty. (Section ILT, Ref (1))
- Find inverse of LT (Section IVLT, Ref (1)) Take a matrix, find Eigenvalues, Eigen vectors, check if it is diagonalizable, diagonalize if it is. (Chapter E ILT, Ref (1))

References

- 1. Robert A. Beezer, Sage for Linear Algebra A Supplement to A First Course in Linear Algebra http://linear.ups.edu/sage-fcla.html
- 2. Sang-Gu Lee *et al.*, Linear Algebra with Sage https://www.researchgate.net/ publication/280093747_Linear_Algebra_with_Sage_BigBook_Free_ebook_English_ Version_All

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	-	3	1	3	-	2
CO 2	3	3	2	1	3	-	3	2	3	-	2
CO 3	3	3	2	2	3	-	3	2	3	-	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	√	\checkmark	\checkmark	\checkmark	✓

Programme	B. Sc. Mathematics H	Ionours					
Course Code	MAT7CJ405						
Course Title	DISCRETE MATH	EMATICS					
Type of Course	Major						
Semester	VII						
Academic	400-499						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Basic Logical thinkin	g and Set theory.					
Course	The "Discrete Mather	natics" course (MAT7CJ4	405) covers es	ssential concepts in			
Summary	discrete structures ar	nd their applications. Stu	dents explore	topics like graph			
		ns, connectivity, and or		<u> </u>			
	structured modules. The course includes practical exercises and references to						
	foundational works in the field, providing students with theoretical						
	U	oblem-solving skills nece	•	her studies or real-			
	world applications in	mathematics and related	areas.				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe fundamental concepts in graph theory, including subgraphs, vertex degrees, paths, connectedness, and operations on graphs.	U	С	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam
CO2	Apply and analyse concepts related to automorphisms of graphs, vertex and edge cuts, and graph connectivity, utilizing definitions, theorems, and exercises.	An	Р	Internal Exam/ Assignment/ Seminar/ Viva/ Report/ End Sem Exam
CO3	Evaluate and compare order relations in mathematical contexts and their implications for applying order theory.	E	С	Internal Exam/ Assignment/ Seminar/ Viva/ Report/ End Sem Exam
	member (R), Understand (U), Apply (Ap), An ctual Knowledge(F) Conceptual Knowledge (C	•		

Knowledge (M)

Textbook	Spr 2. For Lin 3. An	Textbook of Graph Theory. (2/e) Balakrishnan, R, & Rangana inger-Verlag, New York Inc., 2020 undations of Discrete Mathematics, K. D Joshi, New Age Intenited, New Delhi, 1989. Introduction to Formal Languages and Automata (2/e), Peter Epishing House, New Delhi, 1997	rnation	al (P)				
Module	Unit	Content	Hrs (75)	External Marks (70)				
		Module I						
	1	Section 1.0 Introduction (Text 1)						
.	2	2 Section 1.1 Basic Concepts (Text 1)						
Ι	3	Section 1.2 Sub Graphs (Text 1)	12	Min.15				
-	4	Section 1.3 Degrees of Vertices (Text 1)						
F	5							
		Module II						
	6	Section 1.5 Automorphisms of a simple graph (Definition 1.5.1 to Theorem 1.5.3) (Text 1)						
	7	Section 1.5 Automorphisms of a simple (Exercise 5.1 to Exercise 5.5) (Text 1)						
_	8	8Section 1.7 Operations on Graphs (Definition 1.7.1 to Example 1.7.10) (Text 1)0Section 1.7 Operations on Graphs (Exercise 7.3 to						
п	9	11	Min.15					
_	10							
-	11	Section 3.1 Vertex Cuts and edge Cuts (Proposition 3.1.2 to Exercise 1.4) (Text 1)	-					
-	12	Section 3.2 Connectivity and Edge - Connectivity (Definition 3.2.1 to Exercise 2.10) (Text 1)						
	13	Section 3.2 Connectivity and Edge - Connectivity (Theorem 3.2.10 to Theorem 3.2.11) (Text 1) Module III						
-	14	Section 3 Order Relations (Sections 3, 3.1, 3.2 of Text 2)	_					
-	14	Section 3 Order Relations (Sections 3, 3.1, 5.2 of Text 2) Section 3 Order Relations (Sections 3.3, 3.4 of Text book 2)	_	Min.15				
ш	16	Section 3 Order Relations (Sections 3.5, 3.6 of Text book 2)	11					
F	17	Section 3 Order Relations (Sections 3.7 of Text book 2)	1					
	18	Section 3 Order Relations (Sections 3.8, 3.9, 3.10 of Text 2)						
	19	Section 3 Order Relations (Sections 3.11 of Text book 2)	1					
		Module IV						
	20	Section 2.1 Deterministic Finite Accepters (Text 3)	1					
IV	21	Section 2.2 Non-Deterministic Finite Accepters (Text 3)	11	Min.15				
	22							

		Module V	30						
v	V Practicum Line Graphs and Directed Graphs								
Eulerian Graphs and Hamiltonian Graphs									
		Planar and Non planar Graphs							
	Applications of Lattices in Switching Circuits								
		Applications of Automata in Theory of Computing							
Refer	rences		· · ·						
1.	J. C. Abbot	: Sets, lattices and Boolean Algebras; Allyn and Bacon, Bosto	on; 1969.						
2.	J. A. Bondy	y, U.S.R. Murty: Graph Theory; Springer; 2000.							
3.	S. M. Cioal	ba and M.R. Murty: A First Course in Graph Theory and Com	binatorics;						
	Hindustan I	Book Agency; 2009							
4.	R. P. Grima	aldi: Discrete and Combinatorial Mathematics- an applied intr	oduction(5th						
	edn.); Pearson; 2007.								
	5. J. L. Gross: Graph theory and its applications(2nd edn.); Chapman & Hall/CRC; 2005								
6.	1	ory and Decomposition, Jomon Kottarathil, Sudev Naduvath a	nd Joseph						
	Varghese K	Lureethara, CRC Press, London, New York, 2024.							

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	2	-	3	-	2	1	3	-	2
CO 2	1	3	2	1	3	-	3	2	3	-	3
CO 3	-	2	2	1	3	-	3	1	3	-	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	✓	\checkmark	\checkmark
CO 2	√	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	√	\checkmark	~	\checkmark	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours						
Course Code	MAT8CJ406 / 1	MAT8MN406						
Course Title	BASIC MEAS	URE THEORY						
Type of Course	Major							
Semester	VIII							
Academic	400-499	400-499						
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites		Mathematics Concepts: Se	et, Functions, Lo	ogic				
	2. Real Analysis	S						
Course	This course familiarises students with the Lebesgue Measure on the real line							
Summary	and how it enab	and how it enables the construction of a theory of integration that does away						
	with many of th	e drawbacks of Riemann i	ntegration.					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Explain the concepts of Lebesgue measure, including outer measure, measurable sets, and properties such as countable additivity and the Borel- Cantelli Lemma.	U	C	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam				
CO2	Apply theorems related to Lebesgue measurable functions, including Littlewood's Three Principles, Egoroff's, and Lusin's Theorems, to analyse function behaviour and approximations.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam				
CO3	Evaluate and integrate functions using the Lebesgue integral, understanding its differences from the Riemann integral and applying it to bounded and non-negative measurable functions.	Е	F	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam				
	 runctions. * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create(C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Text book	Real <i>A</i> 2000	Analysis, H. L. Royden & P. M. Fitzpatrick, 4 th Edition, Prentice	Hall of [India,			
Modul e	Unit	Hrs (45+ 30)	Ext. Marks (70)				
Ι		Module I					
	1						
	2						
	3	2.1 Introduction – Measure as a set function		Min.15			
	4	15					
	5	2.3 The σ–Algebra of Lebesgue Measurable Sets					
	6	2.4 Outer & Inner Approximation of Lebesgue Measurable Sets					
	7	2.5 Countable Additivity, Continuity & the Borel-Cantelli Lemma					
	8	2.6 Non-Measurable Sets					
Π		Module II					
	10	3.1 Sums, Products & Compositions	8	Min.15			
	11	3.2 Sequential Pointwise Limits & Simple Approximation					
	12	3.3 Littlewood's Three Principles, Egoroff's & Lusin's Theorems					
III		Module III					
	13	4.1 The Riemann Integral					
	14	4.2 Lebesgue Integral of Bounded Measurable Function Over a Set of Finite Measure.					
	15	4.3 Lebesgue Integral of a Non-negative Measurable Function.					
	16	4.4 The General Lebesgue Integral	12	Min.20			
	17	4.5 Countable Additivity & Continuity of Integration (proofs included in practicum)					
	18	4.6 Uniform Integrability: The Vitali Convergence Theorem (proofs included in Practicum)					
IV		Module IV					
	19	6.1 Continuity of Monotone Functions.					
	20	6.2 Differentiability of Monotone Functions: Lebesgue's Theorem	10	Min.10			
	21	6.3 Functions of Bounded Variation: Jordan's Theorem					
	22	6.4 Absolutely Continuous Functions (Proof of Theorem 9 is optional)					
	23	6.5 Integrating Derivatives: Differentiating Indefinite Integrals	1				
V		Module V	30				
	Practic	um:					
	The go	bal is for the students to learn the following selected topics in 10					
	practic	cum sessions of three hours each via self-study and group activities.					
	The le	cturer may assist by running group discussions and supervising					
		eminars and referring library books for self-study and					
		reparations.					
	1	Proofs in Chapter 1: The Real Numbers					
	2	Section 2.7 - The Cantor Set & the Cantor-Lebesgue Function					
	3	Proofs in Section 4.5					
	4	Proofs in Section 4.6					

5	5.1: Uniform Integrability & Tightness				
6	5.2: Convergence in Measure				
7	5.3: Characterizations of Riemann & Lebesgue Integrability				
8	7.1: Normed Linear Spaces				
9	7.2: Inequalities				
10	7.3: Riesz-Fischer Theorem				

References

- 1. R. G. Bartle, Wiley, The Elements of Integration & Lebesgue Measure, 1995..
- 2. G. de Barra, Measure Theory & Integration, New Age International Publications, 1981.
- 3. David M. Bressoud, A Radical Approach to Lebesgue's Theory of Integration (ARALTI), Cambridge University Press, 2008.
- 4. P. R. Halmos, Measure Theory, GTM, Springer-Verlag
- 5. Walter Rudin, Principles of Mathematical Analysis, 3rd Edition, Tata McGraw Hill Inc., 1976.
- 6. Walter Rudin, Real & Complex Analysis, 3rd Edition, McGraw Hill Inc., 1987.

*Optional topics are exempted for end semester examination.

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	-	-	3	-	2	1	3	-	2
CO 2	2	2	-	-	3	-	3	2	3	-	3
CO 3	1	-	3	_	3	-	3	1	3	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Programme	B. Sc. Mathematics Honours								
Course Code	MAT8CJ407 / MAT8MN407								
Course Title	NUMBER TH	EORY							
Type of Course	Major								
Semester	VIII								
Academic	400-499								
Level			1						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Basic algebra of	f integers, basic set theory, b	pasic proof tech	niques.					
Course	This is a more	advanced course than MAT	6CJ305 / MA	T8MN305 Elementary					
Summary		y. Here we focus on ari		, e					
	-	prime numbers, quadratic re	1 V	1					
		graphy. Arithmetical functi		•					
	-	and their distribution. We							
		em such as Mobius func	,						
	1	through techniques such		-					
		ext we study their asympto							
		mates, partial summation ar							
		the distribution of prime numbers. The prime number theorem is stated along with some equivalent versions and a build-up to it. Next the concept of quadratic							
		ratic reciprocity and how e studied. The open-ended p							
	applications, al	e studied. The open-ended p	art is Cryptogra	apiry.					

•

.

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse the properties of arithmetical	An	С	Internal
	functions, including the Möbius			Exam/Assignment
	function, Euler totient function, and			/Seminar/ Viva /
	their relationships and products.			End Sem Exam
CO2	Apply Dirichlet multiplication and	Ар	Р	Internal
	inversion formulas to solve problems			Exam/Assignment
	involving arithmetical functions,			/Seminar/ Viva/
	including the Mangoldt function and			End Sem Exam
	Liouville's function.			
CO3	Evaluate and create asymptotic formulas	С	F	Internal
	and theorems related to the distribution			Exam/Assignment
	of prime numbers and quadratic			/Seminar/ Viva/
	residues, utilizing tools such as			End Sem Exam
	Chebyshev's functions and the quadratic			
	reciprocity law.			
* - Remen	nber (R), Understand (U), Apply (Ap), Ana	lyse (An), Ev	aluate (E), Cre	ate (C)
# - Factual	Knowledge(F) Conceptual Knowledge (C)	Procedural k	Knowledge (P)	Metacognitive
Knowledg	e (M)			-

Textbook			pringer Delhi, 1990 n,Neal				
Module	Unit	Hrs	Marks				
			(48+ 12)	Ext: 70			
	1	Section 2.1-Introduction					
	2	Section 2.2- The Mobius function $\mu(n)$					
	3	Section 2.2 The function $\mu(n)$ Section 2.3- The Euler totient function $\phi(n)$					
	4	Section 2.4- A relation connecting μ and ϕ					
	5	Section 2.5- A product formula for $\phi(n)$					
	6	Section 2.6- The Dirichlet product of arithmetical					
	0	functions					
	7	Section 2.7- Dirichlet inverses and Mobius inversion					
	,	formula					
Ι	8	Section 2.8- The Mangoldt function $\Lambda(n)$	18	Min.15			
	9	Section 2.9- Multiplicative functions					
	10	Section 2.10- Multiplicative functions and Dirichlet					
	10	Multiplication					
	11	Section 2.11- Inverse of a completely multiplicative					
		function					
	12						
	13	Section 2.12- Liouville's function $\lambda(n)$ Section 2.13- The divisor functions $\sigma_{\alpha}(n)$					
	14						
		Section 2.14- Generalized Convolutions Module II					
	15	Section 3.1- Introduction	-				
	16	Section 3.2The big oh notation. Asymptotic equality					
		of functions		Min.15			
Π	17	Section 3.3- Euler's Summation formula	10				
	18	Section 3.4- Some elementary asymptotic formulas	10				
	19	Section 3.10- The Partial sums of a Dirichlet product					
	20	Section 3.11- Applications of $\mu(n)$ and $\Lambda(n)$					
	21	Section 3.12- Another identity for the partial sums of a					
		Module III					
	22	Section 4.1- Introduction					
	23	Section 4.2- Chebyshev's functions $\psi(x)$ and $\vartheta(x)$					
III	24	Section 4.3- Relations connecting $\vartheta(x)$ and $\pi(x)$	10	Min.15			
	25	Section 4.4- Some equivalent forms of the prime					
	25	number theorem					
	26	Section 4.5- Inequalities for $\pi(n)$ and p_n					
		Module IV					
	27	Section 9.1- Quadratic residues					
IV	28	Section 9.2- Legendre's symbol and its properties	10	Min.15			
	29	Section 9.3- Evaluation of (-1 p) and (2 p)					

	30 Section 9.4- Gauss' lemma		
	31 Section 9.5- The quadratic reciprocity law		
	32 Section 9.6- Applications of the reciprocity law		
	Module V		
	Chapter III		
	• 1: Some simple cryptosystems -3 hrs		
V	• 2: Enciphering Matrices-4hrs	12	
	Chapter IV		
	• 1: The idea of public key cryptography -3 hrs		
	• 2: RSA-2 hrs		

References

- 1. A. Beautel spacher: Cryptology; Mathematical Association of America (Incorporated); 1994
- 2. H. Davenport: The higher arithmetic(6th Edn.); Cambridge Univ.Press;
- 3. G. H. Hardy and E.M. Wright: Introduction to the theory of numbers; Oxford International Edn; 1985
- 4. A. Hurwitz & N. Kritiko: Lectures on Number Theory; Springer Verlag ,Universi text;1986
- 5. T. Koshy: Elementary Number Theory with Applications; Harcourt / Academic Press;2002
- 6. D. Redmond: Number Theory; Monographs & Texts in Mathematics No: 220; Mar cel Dekker Inc.; 1994
- 7. P. Ribenboim: The little book of Big Primes; Springer-Verlag, New York; 1991
- 8. K.H. Rosen: Elementary Number Theory and its applications(3rd Edn.); Addison WesleyPub Co.; 1993
- 9. W. Stallings: Cryptography and Network Security-Principles and Practices; PHI; 2004
- 10. D.R. Stinson: Cryptography- Theory and Practice(2nd Edn.); Chapman & Hall / CRC (214. Simon Sing: The Code Book The Fourth Estate London); 1999
- 11. J. Stopple: A Primer of Analytic Number Theory-From Pythagoras to Riemann; Cambridge Univ Press; 2003
- 12. S.Y. Yan: Number Theory for Computing(2nd Edn.); Springer-Verlag; 2002

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	1	1	3	-	3	1	3	-	2
CO 2	2	3	2	1	3	-	3	2	3	-	3
CO 3	3	2	3	2	3	-	3	1	3	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathema	atics Honours						
Course Code	MAT8CJ408 / 1	MAT8CJ408 / MAT8MN408						
Course Title	DIFFERENTI	DIFFERENTIAL EQUATIONS						
Type of Course	Major							
Semester	VIII							
Academic	400-499							
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic knowledg	ge of calculus of one variable	e and an introdu	uctory course in Real				
	Analysis							
Course		ances the skill to solve ordinate	•					
Summary	•	ically and computationally		0				
	-	st of the fundamental pher		0				
		differential equation. Stud		w how to model any				
	physical phenor	mena using differential equa	tions.					

•

.

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledg e	Evaluation Tools used						
			Category#							
CO1	Apply the existence and uniqueness theorems for second-order differential equations, including methods such as the method of successive approximations and Picard's theorem.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam						
CO2	Analyse and solve second-order differential equations using power series methods, including ordinary points, regular singular points, and specific functions such as Gauss's Hypergeometric Equation and Legendre Polynomials.	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam						
CO3	Evaluate and determine the stability of autonomous systems and critical points for linear and nonlinear systems using the phase plane analysis and Lyapunov's direct method.	E	М	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam						
# - Factual	direct method. * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)									

Text Book	Differ Editio	Notes, T	hird	
Module	Unit	Hrs (48+	Marks Ext: 70	
			12)	
		Module I		
		Existence and Uniqueness of Solutions and Power		
		Series method of solving differential equations		
	1	69 Method of Successive Approximations		
	2	70 Picard's theorem, theorems A& B (proofs are		
Ι		optional).	12	Min.15
	3	71 Systems. The Second Order Equations		
	4	26 Introduction. A review of Power Series		
	5	27 Series solutions of first order equations		
	6	28 Second order Equations. Ordinary points29 Regular singular points		
	7			
		Module II		
	8	30 Regular Singular Points continued		
	9	31 Gauss's Hypergeometric Equation		
II	10	31 Gauss's Hypergeometric Equation Reduction to	11	M:- 15
11		Hypergeometric equation	11	Min.15
	11	32 The Point at Infinity		
	12	44 Legendre Polynomials (proofs of Rodrigues'		
		formula is optional)		
		Module III		
	13	45 Properties of Legendre Polynomials		
	14	46 Bessel functions.		
III	15	46 Bessel functions. The Gamma function	12	Min.15
	16	47 Properties of Bessel functions		
	17	47 Properties of Bessel functions		
		Zeros and Bessel series. Bessel expansions		
		Module IV		
	18	58 Autonomous systems. The phase plane and its		
	10	phenomena		
IV	19	59 Types of critical points	- 13	Min.15
	20	59 Types of critical points. Stability		
	21	60 Critical points and stability for linear system		
	22	61 Stability by lyapunov direct method		
		Module V		
	•			
\mathbf{V}	•	Proof of theorem B of Unit I	12	
	•	Proof of Rodrigues' formula for Legendre		
		polynomials		
	•	Analyse solutions of Differential Equations using		
		softwares like Python		

References

- 1. G. Birkhoff and G.C. Rota: Ordinary Differential Equations (3rd Edn.); Edn. Wiley & Sons; 1978
- 2. W.E. Boyce and R.C. Diprima: Elementary Differential Equations and boundary value problems (2nd Edn.); John Wiley & Sons, NY; 1969
- 3. A. Chakrabarti: Elements of ordinary Differential Equations and special functions; Wiley Eastern Ltd., New Delhi; 1990
- 4. E.A. Coddington: An Introduction to Ordinary Differential Equations; Prentice Hall of India, New Delhi; 1974
- 5. A. K. Nandakumaran, P. S. Datti, Raju K. George: Ordinary Differential Equations: Principles and Applications, Cambridge University Press

*Optional topics are exempted for end semester examination.

****70** external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	2	1	3	-	3	1	3	-	2
CO 2	2	2	1	-	3	-	3	2	3	-	3
CO 3	1	2	2	2	3	-	3	1	3	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

ELECTIVE COURSES

Programme	B. Sc. Mather	matics Honours								
Course Code	MAT5EJ301(MAT5EJ301(1)								
Course Title	MATHEMA	MATHEMATICAL FOUNDATIONS OF COMPUTING								
Type of Course	Elective (Spe	Elective (Specialisation- Mathematical Computing)								
Semester	V									
Academic Level	300 - 399									
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours						
	4	4	-	60						
Pre-requisites	Fundamental	Mathematics Concepts:	Set, Functions, Lo	ogic						
Course Summary		This course familiarises students with a selection of topics from discrementations which find regular applications in Computer Science.								

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Apply mathematical induction to solve a	Ар	Р	Internal
	variety of combinatorial problems.			Exam/Assignment
				/Seminar/ Viva /
				End Sem Exam
CO2	Analyse and classify different types of	An	С	Internal
	relations and equivalences in			Exam/Assignment
	combinatorial settings.			/Seminar/ Viva /
				End Sem Exam
CO3	Evaluate and demonstrate proficiency in	E	Р	Internal
	using combinatorial techniques such as			Exam/Assignment
	permutations, factorials, and binomial			/Seminar/ Viva /
	coefficients to solve complex problems.			End Sem Exam
* - Remen	uber (R), Understand (U), Apply (Ap), Anal	lyse (An), Ev	aluate (E), Cre	ate (C)
# - Factual	Knowledge(F) Conceptual Knowledge (C)	Procedural k	Knowledge (P)	Metacognitive
Knowledg	e (M)			

Text Book	Oxfor	 (I) Jiří Matoušek and Jaroslav Nešetřil, Invitation to Discrete Mathematics, (2/e) Oxford University Press (II) Robin J Wilson, Introduction to Graph Theory (4/e), Prentice Hall 								
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)						
I		Module I (Text 1)	12							
	1	1.1 An Assortment of problems		-						
	2	1.3 Mathematical Induction (Proof of Theorem 1.3.1 is optional)								
	3	1.5 Relations, 1.6 Equivalences and other special type of relation	-							
	4	3.1 Functions and subsets, 3.2 Permutations and factorials								
	5	3.3 Binomial Coefficients-								
	6	6 3.7 Inclusion-Exclusion Principle. (Third proof of Theorem 3.7.2 is optional)								
II		12	-							
	7	4.1 The notion of a graph; Isomorphism								
	8	4.2 Subgraphs, Components, Adjacency Matrix								
	9	4.3 Graph Score (Proof of Theorem 4.3.3 is optional)								
	10	4.4 Eulerian Graphs (Second proof of Theorem 4.4.1 and lemma 4.4.2 are optional)								
	11	4.5 Eulerian Directed Graph	_							
	12	5.1 Definition and characterizations of trees								
III		12	-							
	13	12. Planar Graphs (Proof of Theorem 12.2 and Theorem 12.3 are optional)								
	14	13. Euler's formula (up to Corollary 13.4)	1							
	15	13. Euler's formula (from Corollary 13.4)	1							
	16	17. Coloring Graphs	1							

	17	19. Coloring Maps (Proof of Theorem 19.2 and Theorem 19.4 are optional)				
	18	25 Hall's Marriage theorem				
IV		Module IV (Text 1)	12			
	19	10.1 Proofs by Counting (2-Coloting revisited and related topics are optional)				
	20	10.2 Finite Probability Spaces (up to Random graphs)				
	22	10.2 Finite Probability Spaces (From Random graphs)				
	22	10.3 Random Variables and their Expectations				
V	Module V					
	Hamil	Itonian Graphs, 2-Connectivity, Examples of applications of Probad Remover Theory Concerting Functions, simulating random exp				
		od, Ramsey Theory, Generating Functions, simulating random exp hon and calculating expectations. Brook's Theorem.				
References	in pytl					
(ISB 2. Disc	in pytl crete Ma 3N- 13: crete Ma		ersity Press			

Note: 1) Optional topics are exempted for end semester examination 2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of	COs with PSC)s and POs :
------------	--------------	---------------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	1	3	1	3	1	3	-	2
CO 2	2	2	1	1	3	1	3	2	3	-	2
CO 3	2	3	2	2	3	1	3	2	3	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	✓
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT5EJ302(1)	MAT5EJ302(1)					
Course Title	DATA STRUC	DATA STRUCTURES AND ALGORITHMS					
Type of Course	Elective (Speci	Elective (Specialisation- Mathematical Computing)					
Semester	V	V					
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	1. Fundamental Mathematics Concepts: Sets, Functions 2. Discrete Mathematics						
Course Summary	This course familiarizes students with computational problems and computational thinking using some of the basic algorithmic strategies.						

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools		
		Level*	Category#	used		
CO1	Analyse and compare the efficiency of	An	Р	Internal		
	algorithms for computing Fibonacci			Exam/Assignment/		
	numbers, distinguishing between			Seminar/ Viva /		
	exponential and polynomial approaches.			End Sem Exam		
CO2	Demonstrate proficiency in asymptotic	An	Р	Internal		
	analysis to assess the efficiency of			Exam/Assignment/		
	algorithms.			Seminar/ Viva /		
				End Sem Exam		
CO3	Apply classical algorithms for number	Ар	Р	Internal		
	operations, including addition,			Exam/Assignment/		
	multiplication, and modular arithmetic,			Seminar/ Viva /		
	to solve computational problems			End Sem Exam		
	efficiently.					
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Knowledge (M)						

Text Book		<i>Algorithms</i> by Sanjoy Dasgupta, Christos H. Papadimitriou, U McGraw- Hill Education, 2006. ISBN: 978-0073523408.	mesh Vazii	rani.
Module	Unit	t Content		Ext. Marks (70)
Ι		Module I	12	
	1	Computing Fibonacci Numbers: Exponential and Polynomial Algorithms		
	2	Efficiency of Algorithms: Asymptotic Analysis, Big-O Notation	-	
	3	Algorithms with Numbers: Efficiency of classical Addition and Multiplication algorithms		
	4	Algorithms for Modular Arithmetic	-	
	5	Euclid's Algorithm for GCD	1	
	6	Primality Testing	_	
	Sectio	ns from Text: 0.2, 0.3, 1.1, 1.2, 1.3		
II		Module II	12	
	7	Fast Integer Multiplication		
	8	Recursive Relations		
	9	Binary Search		
	10	Merge Sort		
	11	Graph Representations: Adjacency Matrix, Adjacency List		
	12	Depth First Search Undirected Graphs		
	13	Depth First Search in Directed Graphs		
	Sectio	ns from Text: 2.1, 2.2. 2.3, 3.1-3.3.		
III		Module III	12	
	14	Checking connectivity		
	15	Directed Acyclic Graphs, Strongly Connected Components		
	16	Breadth First Search and Computation of distances.		
	17	Weighted Graphs and Dijkstra's Algorithm		
	18	Priority queue implementations		
	19	Shortest Paths in Directed Acyclic Graphs		

IV		Module IV	12
	20	Minimum Spanning Trees: Cut Property	
	21	Kruskal's Algorithm	-
	22	Data structure for disjoint sets.	-
	23	Prim's algorithm	_
	24	Dynamic Programming and Shortest Path in Directed Acyclic Graphs (DAG)	
	25	All pairs of Shortest Paths and Floyd Warshall Algorithm	-
	Sectio	ons from Text: 5.1, 5.4, 6.1, 6.6.	
V		Module V	12
(Onon			
(Open Ended)	27	Practical	
	27	Practical Implement the following algorithms in Python - Fibonacci Numbers (exponential and polynomial)	
(Open Ended)	27	Implement the following algorithms in Python	
	27	Implement the following algorithms in Python - Fibonacci Numbers (exponential and polynomial)	
	27	Implement the following algorithms in Python - Fibonacci Numbers (exponential and polynomial) - Euclid's algorithm (extended version)	
	27	 Implement the following algorithms in Python Fibonacci Numbers (exponential and polynomial) Euclid's algorithm (extended version) Primality Testing 	

- 2. *Introduction to Algorithms* (3rd Edition) by Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein. PHI Learning, 2009. ISBN:978-81-203-4007-7.
- 3. Algorithm Design by Jon Kleinberg and Eva Tardos. Pearson, 2015. ISBN:978-93-325-1864.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	2	-	-	3	1	3	3	3	-	3
CO 2	2	3	2	2	-	-	3	1	3	3	3	-	2
CO 3	2	3	3	2	-	-	3	1	3	3	3	-	2

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mather	B. Sc. Mathematics Honours						
Course Code	MAT6EJ301(1)							
Course Title	NUMERICAL ANALYSIS							
Type of	Elective (Spe	Elective (Specialisation- Mathematical Computing)						
Course								
Semester	VI							
Academic	300- 399	300- 399						
Level								
Course	Credit	Lecture/Tutorial	Practical	Total Hours				
Details		per week	per week					
	4	4	-	60				
Pre-requisites	1. Real analys	is						
	2. Linear alge							
	3. Basics of P	3. Basics of Python Programming						
Course	This course familiarises students with the fundamental numerical analysis. Moreover,							
Summary		ilitates students to apply re		lysis and linear algebra to				
	perform quant	titative analysis of numeric	al solutions.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Apply the Bisection Method, Iteration Method, Newton- Raphson Method, and Secant Method to solve algebraic and transcendental equations numerically.	Ар	P	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
CO2	Apply such as Newton's formulae, Lagrange's interpolation formula, and divided differences to approximate functions from discrete data.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
CO3	Implement numerical methods such as Euler's method, Modified Euler's Method, Runge-Kutta method, and Adams-Moulton Method to solve ordinary differential equations (ODEs).	Ap	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive 						
Knowledg	e (M)						

Text B	ook	 [1]. S. S. Sastry, Introductory Methods of Numerical Analysis (5/e), PHI Learning (2012) [2]. Dimitrios Mitsotakis: Computational Mathematics: An Introduction to Numerical Analysis and Scientific Computing with Python, CRC Press (2023), ISBN 978-1-032-26240-6. [3]. Jupyter Notebooks of [2] available at: https://github.com/dmitsot/computational_mathematics 			
Module	Uni t	Content	Hrs (48+12)		
Ι		Module I (Text 1)	12		
	1	2.1 Introduction			
	2	2.2 Bisection Method			
	3	2.4 Iteration Method (Derivation of Condition for Convergence and Acceleration of Convergence are optional)			
	4	2.5 Newton- Raphson Method (Generalized Newton's Method is optional)			
	5	2.7 Secant Method			
II	Module II (Text 1)		12		
	6	3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences			
	7	3.6 Newton's formulae for interpolation (up to and including Example 3.5)			
	8	3.6 Newton's formulae for interpolation (From Example 3.6)			
	9	3.9.1 Langrange's interpolation formula			
	10	3.10 Divided differences and their properties			
	11	3.10.1 Newton's General interpolation formula			
III		Module III (Text 1)	12		
	12	6.1 Introduction, 6.2 Numerical Differentiation (6.2.1, 6.2.2 and 6.2.3 are optional)			
	13	6.4.1 Trapezoidal Rule			
	14	6.4.2 Simpson's 1/3-Rule			
	15	6.4.3 Simpson's 3/8 Rule			
	16 6.10 Numerical Double Integration				
IV	17	Module IV (Text 1)	12		
	17	8.1 Introduction			
	18	8.2 Solution by Taylor's series,	-		
	19	8.4 Euler's method (8.4.1 is optional)	-		
	20	8.4.2 Modified Euler's Method	-		
	21	8.5 Runge-Kutta method	-		
	22	8.6.1 Adams-Moulton Method			

1 Jupyter Lab and Notebooks. Google Colab. Instructions in [6] and [7]. Quick review of Python Programming. Ch 1 Notebook from [3]. 2 Continue Quick Review of Python. Notebook [9]. Numpy and Scipy review from [7]. Ch 2 Notebook from [3]. 3 Bisection Method. Algorithm and Program. Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2]. Optional: Program to compute speed of convergence. Optional: False Position variant from [12]. 4 Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2]. 5 Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 6 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration, Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2].	V		Module V (Practicals)	
 [7]. Quick review of Python Programming. Ch 1 Notebook from [3]. Continue Quick Review of Python. Notebook [9]. Numpy and Scipy review from [7]. Ch 2 Notebook from [3]. Bisection Method. Algorithm and Program. Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2]. Optional: Program to compute speed of convergence. Optional: False Position variant from [12]. Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2]. Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. Fast computation using SciPy.Optimize. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. The Module scipy.integrate. Trapezoidal Rule. Composite Trapezoidal Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [3]. 	_			
 Continue Quick Review of Python. Notebook [9]. Numpy and Scipy review from [7]. Ch 2 Notebook from [3]. Bisection Method. Algorithm and Program. Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2]. Optional: Program to compute speed of convergence. Optional: False Position variant from [12]. Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2]. Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 6.1 of [2]. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 		1		
 review from [7]. Ch 2 Notebook from [3]. 3 Bisection Method. Algorithm and Program. Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2]. Optional: Program to compute speed of convergence. Optional: False Position variant from [12]. 4 Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2]. 5 Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 6.4 of [2]. 8 Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 	Ļ			
 Bisection Method. Algorithm and Program. Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2]. Optional: Program to compute speed of convergence. Optional: False Position variant from [12]. Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2]. Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 		2		
 Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2]. Optional: Program to compute speed of convergence. Optional: False Position variant from [12]. 4 Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2]. 5 Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8 Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 	L			
 Optional: Program to compute speed of convergence. Optional: False Position variant from [12]. 4 Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2]. 5 Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8 Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 		3		
Optional: False Position variant from [12].4Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2].5Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2].6Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2].7Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2].8Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2].9Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2].10Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2].11Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2].12Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2].13The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].				
 4 Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2]. 5 Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8 Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 			Optional: Program to compute speed of convergence.	
Notebook: Ch 5 of [3]. Reference: 5.2 of [2]. 5 Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].			Optional: False Position variant from [12].	
 5 Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 		4	Fixed Point Method (Iteration Method). Algorithm and Program.	
 5 Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 			Notebook: Ch 5 of [3]. Reference: 5.2 of [2].	
Notebook: Ch 5 of [3]. Reference: 5.3 of [2]. 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	F	5		
 6 Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2]. 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 			1 0 0	
Notebook: Ch 5 of [3]. Reference: 5.4 of [2].7Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2].8.Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2].9Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2].10Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2].11Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2].12Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2].13The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	F	6		
 7 Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 			e e	
Notebook: Ch 5 of [3]. Reference: 5.6 of [2]. 8. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	F	7		
 8. Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2]. 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 				
Notebook: Ch 6 of [3]. Reference: 6.1 of [2].9Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2].10Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2].11Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2].12Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2].13The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	F	8.		
 9 Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2]. 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 				
Notebook: Ch 6 of [3]. Reference: 6.2 of [2].10Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2].11Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2].12Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2].13The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	F	9		
 10 Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 		-	1 0	
Notebook: Ch 6 of [3]. Reference: 6.6 of [2]. 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	F	10		
 11 Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 		10		
Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2].12Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2].13The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	F	11		
Notebook: Ch 8 of [3]. Reference: 8.1 of [2]. 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].		11		
 12 Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3]. 				
Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2]. 13 The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	-	12		
Notebook: Ch 7 of [3]. Reference: 7.1. of [2].13The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].		14		
13The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].				
Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].		13		_
Reference: 7.4 of [2]. Notebook: Ch 7 of [3].		13		
14 E-1. 2. Mode of Lee groups of E-1. 2. Mode of D-6 0.0. (10)	F	1.4		_
14 Euler's Method. Improved Euler's Method. Reference: 8.2 of [2]. Notebook: Ch 8 of [3].		14	1	

References:

1. F.B. Hildebrand: Introduction to Numerical Analysis, TMH.

2. J.B. Scarborough: Numerical Mathematical Analysis, Oxford and IBH

3. Joakim Sundnes, Introduction to Scientific Programming with Python. Springer (2020). ISBN 978-3-030-50355-0. Open Access at: <u>https://link.springer.com/book/10.1007/978-3-030-50356-7</u>

4. Sven Linge and Hans Petter Langtagen, Programming for Computations -- Python. A Gentle Introduction to Numerical Simulations With Python. Springer (2018). ISBN 978-3-319-81282-3. Open Access at: <u>https://link.springer.com/book/10.1007/978-3-319-32428-9</u>

Note: 1) Optional topics are exempted for end semester examination.

2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

3) Module V is algorithms and lab computations. Algorithms for each numerical method can be taught along with the Python code in lab sessions. The second text [2] stresses computation from the beginning and is a lab reference. The Jupyter Notebooks[3] intended for live lab lessons

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	3	3	-	2
CO 2	2	3	3	2	3	1	3	3	3	-	2
CO 3	3	3	3	2	3	1	3	3	3	-	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	>	✓
CO 2	~	~	\checkmark	~	~
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours							
Course Code	MAT6EJ302(1)							
Course Title	MATHEMAT	MATHEMATICS FOR DIGITAL IMAGES						
Type of Course	Elective (Speci	alisation- Mathematical C	omputing)					
Semester	VI							
Academic	300 - 399							
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic Geometry	y and Algebraic Structures						
Course		s paper is mathematics unde						
Summary		luce patterns automatically						
		user. We begin with isometr						
		distance and hence shape.						
		ons or translation, and the ir		e				
		for combining isometries, a						
		lar. We also apply this to cl						
	-	even types. Our next focu	•	netries; that is, those				
		ch send a pattern onto itself,	-					
	0 0	er with the same size and s	1 1	· · · · · ·				
	-	metries in two non-paralle		-				
		shaped cells, falling into	• •	•				
		17 pattern types, each	with its OW	in set of interacting				
	symmetry operation	auons.						

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Describe the concept of isometries in geometry, including translation, rotation, and reflection, and explain their properties and how they preserve distances.	U	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
CO2	Demonstrate the ability to compose isometries, apply their combined effects, and analyse the outcomes of sequential transformations.	Ар	Р	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam				
CO3	Investigate the classification of plane patterns, including different net types such as parallelogram nets, rectangular nets, centred rectangular nets, square nets, and hexagonal nets, and analyse examples of the 17 plane pattern types.	An	F	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
# - Factual	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Text Book		HEMATICS FOR DIGITAL IMAGES : Creation, Compressi gnition. S G Hoggar- Cambridge University Press.	on, Restor	ation,
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Module I	12	
	1	Isometries and their sense		
	2	The plane and vectors		
	3	Isometries – Translation, Rotation, Reflection		
	4	The sense of an isometry		
	5	The Classification of isometries		
	6	Composing isometries		
	Sectio	ns from Text (i): Chapter 1 – 1.1, 1.2, 1.3		
II		Module II	12	
	7	Reflections are the key		1
	8	Some useful compositions	1	
	9	The Image of a line of symmetry	1	
	10	The dihedral group		
	11	Appendix on groups		
	Sectio	ns from Text (i): Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5		
III		Module III	12	
	12	Classification of braids		
	13	Constructing braid patterns		
	14	Translations and nets		
	15	Cells		
	16	The five net types		
	17	Nets allowing a reflection		
	Sectio	ns from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3		
IV		Module IV	12	
- ·	18	Preliminaries		
	19	The general parallelogram net	1	
	20	The rectangular net		
	21	The centred rectangular net	1	
	22	The square net	1	
	23	The hexagonal net	1	
	24	Examples of the 17 plane pattern types	1	
	25	Scheme for identifying pattern types	1	
		<i>ns from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8</i>		
V	200110	<u> </u>	12	1
(Open Ended)		Module V Practical		
	26	Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB		
	27	Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		

References:

- 1. Baldock R and Graham J (2000) Image Processing and analysis, a practical approach, Oxford University Press
- 2. Gonzalez R C and Woods R E (1993) Digital Image Processing, Addison-Wesley

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	2	2	3	-	2
CO 2	2	3	2	1	2	1	2	2	2	-	2
CO 3	3	3	2	1	3	1	3	3	3	-	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours							
Course Code	MAT5EJ303 (2)							
Course Title	CONVEX OP	CONVEX OPTIMIZATION						
Type of Course	Elective (Speci	Elective (Specialisation- Data Science)						
Semester	V	V						
Academic Level	300 - 399							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	Linear Algebra	and Multi Variable Calcul	us					
Course Summary	theory of convertise this course are and methods in instance, unders functions, whil efficient algorit	Linear Algebra and Multi Variable CalculusThe course covers the basic theory of convex sets and functions, optimization theory of convex functions and Lagrangian duality. The concepts explored in this course are important for data science, as they underpin many algorithms and methods in machine learning, optimization, and statistical analysis. For instance, understanding gradients and Hessians is essential for optimizing cost functions, while knowledge of convex optimization is vital for developing efficient algorithms. This mathematical foundation will enable data scientists to design, analyse, and implement sophisticated models and solutions.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply the basic properties of convex sets and functions.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply simple problems using convex optimization methods and solve them.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Formulate the dual of a convex optimization problem and describe the properties.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	ber (R), Understand (U), Apply (Ap), Analy Knowledge(F) Conceptual Knowledge (C)			
Knowledg				0

Text Book		1. K. G. Binmore, Mathematical Analysis: A straightfor 2nd edition, Cambridge University Press, 1982.	ward appro	ach,
		2. Stephen Boyd, and Lieven Vandenberghe. Convex op Cambridge university press, 2004.	timization.	
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Module I	10	
	1	Scalar and vector fields - Directional and Partial Derivatives		
	2	Differentiable functions and total Derivative - Matrix representation - Gradient and Jacobian		
	3	Chain rule for differentiation - matrix form		
	4	Stationary points - conditional for stationarity		
	5	Second derivatives and Hessian Matrix.		Min 15
	6	Mean value theorems, second order Taylor's theorem		
	7	Eigenvalues of Hessian		
	8	Classification of stationary points.		
	Chap	ter 19 of Text Book 1 - pages 190-231.		
II		Module II	14	
	9	Affine and Convex Sets		
	10	Convexity preserving operations		
	11	Generalized inequalities		
	12	Supporting and separating hyperplanes		
	13	Dual cones and generalized inequality		Min 15
	14	Basic properties and examples of convex functions		
	15	Convexity preserving operations		
	16	Quasi convex, log convex functions		
	17	Convexity and generalized inequalities		
	Ch	apter 2 and 3 of Text Book 2.		
III		Module III	12	
	18	Optimization problems and convex optimization	``	1

2.		, 2015. Lauritzen, Undergraduate Convexity: From Fourier And Motzkin T World Scientific, 2013.	o Kuhn Ar	ıd
1.	David	G. Luenberger and Yinyu Ye. Linear and nonlinear programming.	4th edition.	
Reference	-8.			
(Open Ended)	27	Instances of practical problems that can be solved with convex optimization methods discussed in the course such as linear classifiers, support vector machines, linear and logistic regression.		
V (Open		Module V	12	
	Chap	ter 5 of Text Book 2		
	25	Generalized inequalities	_	
	24	Theorems of alternatives		
	23	Optimality condition		Min 15
	22	Saddle point interpretation		
	21	The Lagrangian dual and geometric interpretation		
	20	The Lagrange dual function		
IV		Module IV	12	
	Chap	ter 4 of Text Book 2		
	19	Vector optimization		
	22	Generalized inequality constraints		
	21	Geometric programming		
	20	Quadratic optimization problems		Min 15
	19	Linear optimization problems		

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	-	2	3	2	3	2	3	1	2
CO 2	2	3	1	2	3	2	3	3	3	1	3
CO 3	2	2	-	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours					
Course Code	MAT6EJ303 (2)					
Course Title	MACHINE LEARNING - I					
Type of Course	Elective (Specialisation- Data Science)					
Semester	V					
Academic Level	300 - 399					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	4	4	-	60		
Pre-requisites	Linear Algebra					
Course Summary	models and techn classical method	The course develops the basic theory of linear discriminative and generative learning models and techniques for linear regression and classification. Understanding both classical methods and modern neural network approaches will prepare students to tackle a wide range of data science challenges.				

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Describe various regression and	Ар	Р	Internal
	classification methods and apply them			Exam/Assignment/
	for simple problems.			Seminar/ Viva /
				End Sem Exam
CO2	Apply methods of Bayesian inference	An	Р	Internal
	to learning problems and analyse the			Exam/Assignment/
	solutions			Seminar/ Viva /
				End Sem Exam
CO3	Describe the functioning of feedforward	U	С	Internal
	neural network models of learning.			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
* - Remembe	r (R), Understand (U), Apply (Ap), Analys	e (An), Evalu	ate (E), Create	(C)
# - Factual Ki	nowledge(F) Conceptual Knowledge (C) Pr	ocedural Kno	wledge (P) Me	etacognitive
Knowledge (M)		_ , , ,	-

Text Book		Pattern Recognition and Machine Learning - Christopher M. -2006	Bishop - S	pringer
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Module I	12	
	1	Review of probability theory, density and distribution functions		
	2	expectation and covariance, Bayesian probabilities.		
	3	Gaussian distribution: conditional and marginal distributions		
	4	Maximum Likelihood and Bayesian inference for Gaussian		Min 15
	5	Decision Theory - inference and decision, loss functions	-	
	6	Entropy, relative entropy and mutual information		
	Chap	ter 1 and Section 3 of Chapter 2 from text book.		
II		Module II	12	-
	7	Maximum likelihood and least squares		-
	8	Regularized least squares		
	9	Bias-Variance Decomposition		
	10	Bayesian Linear Regression		
	11	Parameter and Predictive Distributions		Min 15
	12	Bayesian model comparison		
	Chap	ter 3 of text book		
III		Module III	12	-
	13	Discriminant functions		1
	14	Least squares, Fischer discriminant and the relation between them.		
	15	The perceptron algorithm		
	16	Maximum likelihood classifier		
	17	Probabilistic generative models and Logistic Regression	-	Min 15
	18	Bayesian logistic regression	-	
	Chap	ter 4 of text book		1

 Feed forward neural networks Network training and gradient descent optimization Analysis of error backpropagation 		
21 Analysis of error backpropagation		
22 Hessian matrix and diagonal approximation		
23 Regularization in neural networks.		Min 15
Chapter 5 of text book		
Module V	12	
Model Selection and Validation		-
Non-Uniform Learnability		
The Run Time of Learning		
	Chapter 5 of text book Module V Model Selection and Validation Non-Uniform Learnability The Run Time of Learning	Chapter 5 of text book Module V 12 Model Selection and Validation Non-Uniform Learnability

2) Foundations of Machine Learning - Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar -The MIT Press - 2012

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	2	3	2	3	3	3	1	3
CO 2	3	3	2	2	3	2	3	3	3	1	3
CO 3	3	2	2	2	3	2	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT6EJ303 (2)	MAT6EJ303 (2)					
Course Title	APPLIED PROBABILITY						
Type of Course	Elective (Specialisation- Data Science)						
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Basic Algebra ar	nd Calculus					
Course Summary	probability theor chains is essenti	This course serves as an introduction to the fundamental principles and concepts of probability theory. Understanding probability distributions, expectations, and Markov chains is essential for modelling data, making predictions, and analysing complex systems in data science applications.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain basic concepts in probability theory, including discrete and continuous probability distributions, joint distributions for multiple random variables, and Markov chains.	U	C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply probability distributions to practical scenarios and compute key measures such as expected value and variance, with an emphasis on their significance in decision-making and risk assessment.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Describe fundamental limit theorems, such as the law of large numbers and the central limit theorem, and their implications for probability theory and statistical inference.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
# - Factual	ber (R), Understand (U), Apply (Ap), Analy Knowledge(F) Conceptual Knowledge (C)			
Knowledg				

Text B	ook	Introduction to Probability Models - Sheldon M Ross -10 th (e)-	Academic	e Press
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Module I	12	
	1	Sample space and events.		
	2	Probabilities defined on events.		
	3	Conditional Probabilities		
	4	Independent Events.	-	
	5	Bayes 'Formula.	1	Min 15
	6	Random Variables.	1	
	7	Discrete Random Variables.	-	
	8	Continuous Random Variables		
	-	er 1: Sections 1.2, 1.3, 1.4, 1.5, 1.6 er 2: Sections 2.1, 2.2, 2.3		
II		Module II	12	
	9	Expectation of a Random Variable – Discrete Case and Continuous Case		
	10	Jointly distributed Random Variables.		NG- 15
	11	Moment generating functions.		Min 15
	12	Limit Theorems	_	
	Chapte			
III		Module III	12	
	13	Conditional probability and conditional expectation- The discrete case.		1
	14	Conditional probability and conditional expectation- The continuous case.		
	15	Computing expectations by conditioning.	1	Min 15
	16	Computing Probabilities by conditioning.	1	
	Chapte	er3: Sections 3.1, 3.2, 3.3, 3.4, 3.5		
IV		Module IV	12	
	19	Markov chain – definition and examples.		

	20	Chapman-Kolmogrov equations.		
	21	Classification of states of a Markov Chain.		
	22	Limiting Probabilities		
	Chapt	er4: Sections 4.1, 4.2, 4.3, 4.4		Min 15
V		Module V	12	
	23	Properties of exponential distribution, Counting processes, Poisson process, properties of Poisson process		_
Referenc	es:			

- 1. S. Ross, "A First Course in Probability," Eighth Edition, Prentice Hall.
- 2. W. Feller, "An Introduction to Probability Theory and its Applications," Vol.I, John Wiley.
- 3. B.V. Gnedenko, "Theory of Probability," Chelsea, New York
- 4. S.M. Ross, "Stochastic Processes," second edition, John Wiley
- 5. S. Karlyn and H. Taylor, "A First course in Stochastic Processes", second edition, Academic Press

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	2	3	2	3	2	3	1	2
CO 2	2	3	2	2	3	2	3	3	3	1	3
CO 3	3	2	1	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT6EJ304 (2)						
Course Title	MACHINE LEARNING - II						
Type of Course	Elective (Specialisation- Data Science)						
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Machine Learn	ing - I					
Course Summary	This course studies advanced models of machine learning. Mastery of techniques like regression, classification, and dimensionality reduction will enable students to handle complex data sets, perform advanced analytics, and develop robust predictive models. Understanding kernel methods, SVMs, graphical models, and PCA will provide the necessary tools for tackling a wide range of data-driven challenges in real-world applications.						

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse and design support vector machines and kernel methods for learning problem.	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Analyse graphical models for learning and explore belief propagation in graph models.	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Apply PCA and dimensionality reduction techniques	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
* - Remember	r (R), Understand (U), Apply (Ap), Analyse	e (An), Evalu	ate (E), Create	(C)
# - Factual Kr	nowledge(F) Conceptual Knowledge (C) Pr	ocedural Kno	wledge (P) Me	etacognitive
Knowledge (N	(I)			

Text Book		Pattern Recognition and Machine Learning - Christopher - 2006	M. Bishop - S	pringer
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Module I	12	
	1	Review of linear regression and classification		
	2	Dual representations and construction of kernels		
	3	Radial basis function networks - Nadaraya-Watson model		
	4	Gaussian processes for regression and classification		
	5	Laplace approximation		
	6	Connection to neural networks		
	Chap	ter 6 of text book		
П		Module II	12	
	7	Maximum Margin Classifiers		
	8	Relation to logistic regression		
	9	Regression using SVM.		
	10	Relevance Vector Machines		
	11	Regression and classification using RVM		
	Chap	ter 7 of text book		
III		Module III	12	
	12	Bayesian Networks		
	13	Markov Random Fields		
	14	Factorization properties		
	15	Inference in Graphical Models		
	16	Factor graphs and sum-products algorithm		
	17	Belief propagation		
	Chap	ter 8 of text book		
IV		Module IV	12	
	18	Maximum variance and minimum error PCA		

	19	Dimensionality reduction			
	20				
	21 Bayesian PCA and factor analysis				
	22	Kernel PCA	_		
	Chap	oter 12 of text book			
V		Module V	12		
		1. Boosting			
		2. Convex learning problems			
		3. Regularization in convex learning			
		4. Learning of convex Lipschitz and smooth bounded functions			
		5. Stochastic gradient descent			

2) Foundations of Machine Learning - Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar The MIT Press - 2012

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	2	3	2	3	2	3	3	3	1	3
CO 2	3	3	2	2	3	2	3	2	3	3	3	1	3
CO 3	3	3	2	2	3	2	3	2	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	\checkmark	✓

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours							
Course Code	MAT5EJ305								
Course Title	HIGHER AL	HIGHER ALGEBRA							
Type of Course	Elective	Elective							
Semester	V	V							
Academic Level	300 - 399								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Fundamental N	Iathematics Concepts: Set, F	unctions, Logic						
Course Summary	This course exp	plores topics that follow as a d	irect continuation	on of high school					
	algebra, like th	ne general theory of equation	ns, and classific	ation of second-					
	degree curves a	and surfaces.							

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Apply the algebraic methods used in	Ар	Р	Internal
	solving polynomial equations of low			Exam/Assign
	degrees and place them in a general			ment/Seminar/
	context			Viva / End
				Sem Exam
CO2	Explain the fundamental concepts of	U	С	Internal
	algebraic equations, including the Identity			Exam/Assign
	Theorem and the Fundamental Theorem of			ment/Seminar/
	Algebra.			Viva / End
				Sem Exam
CO3	Analyse and evaluate various solutions of	An	С	Internal
	equations, including Cardan's Formulas			Exam/Assign
	and trigonometric solutions, and identify			ment/Seminar/
	the irreducible cases.			Viva / End
				Sem Exam
* - Rem	nember (R), Understand (U), Apply (Ap), Ana	ulyse (An), Ev	valuate (E), Cr	eate (C)
# - Fact	ual Knowledge(F) Conceptual Knowledge (C) Procedural	Knowledge (P)	Metacognitive
Knowle	edge (M)			

Text	Camb	metry(2/e), David A Brannan, Mathew F. Esplen, Jere ridge University Press (2012) ISBN: 978-1-107-64783- ory of Equations, J. V. Uspensky, McGraw Hill (1948)	1	
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70
Ι		Module I	16	
	1	Chapter II -Section 3: Division of Polynomials		
	2	Chapter II -Section 4: The Reminder Theorem		
	3	Chapter II- Section 5: Synthetic Division		
	4	Chapter II- Section 7: Taylor's Formula		
	5	Chapter III - Section 1: Algebraic Equations		
	6	Chapter III - Section 2: Identity Theorem		
	7	Chapter III - Section 3: The Fundamental Theorem of Algebra		
II		Module II	16	
	8	Chapter III - Section 4: Imaginary Roots of Equations with Real Coefficients		
	9	Chapter III - Section 5: Relations Between Roots and Coefficients		
	10	Chapter IV - Section 1: Limits of Roots Section 2: A Method to Find an Upper Limit of Positive Roots		
	11	Chapter IV - Section 3: Limit for Moduli of Roots		
	12	Chapter V - Section 1: What is the "Solution" of an Equation?, Section 2: Cardan's Formulas, Section 3: Discussion of Solution		
	13	Chapter V - Section 4: Irreducible Case Section 5: Trigonometric Solution		
	14	Chapter V- Section 6: Solution of Biquadratic Equations		

III		Module III	12	
	15	Section 1.1.1: Conic Sections, Section 1.1.2: Circles		
	16	Section 1.1.3: Focus-Directrix Definition of the Non- Degenerate Conics		
	17	Section 1.1.4: Focal Distance Properties of Ellipse and Hyperbola		
	18	Section 1.1.5: Dandelin Spheres		
IV		Module IV	4	
	19	Section 1.2.2: Reflections		
	20	Section 1.3: Recognizing Conics		
	21	Section 1.4.1: Quadric Surfaces in \mathbb{R}^3		
	22	Section 1.4.2: Recognizing Quadric Surfaces		
V		Module V	12	
	1	Geometry and Transformations - What is Euclidean Geometry? Isometry, Euclidean properties, Euclidean transformation, Euclidean-Congruence		
	2	Affine Transformations, Basic Properties of Affine Transformations		
	3	Fundamental Theorem of Affine Geometry		

References:

1. Higher Algebra, Barnard & Child, St. Martin's Press, NY, USA (Public Domain, Copyright exhausted)

2. Thomas & Finney, Calculus & Analytic Geometry, Addison Wesley

3. George A Jennings: Modern Geometry with Applications Universitext, Springer (1994) ISBN: 0-387-94222-X

4. Walter Meyer: Geometry and its Application(2/e) Elsever, Academic Press(2006) ISBN: 0-12-369427-0

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	2	3	1	2	1	3	-	1
CO 2	3	3	2	2	3	1	2	1	3	-	1
CO 3	2	3	3	2	3	1	3	1	3	-	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	✓
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours							
Course Code	MAT5EJ306								
Course Title	LINEAR PRO	OGRAMMING							
Type of Course	Elective								
Semester	V								
Academic Level	300 - 399								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Basic Calculu	s and Linear Algebra							
Course	Linear Progra	mming is a mathematical n	nodelling techn	ique in which a					
Summary	linear function	n is maximized or minimiz	ed when subject	ected to various					
	constraints. Th	is technique has been useful f	or guiding quan	titative decisions					
	in business pla	in business planning, in industrial engineering, and—to a lesser extent—in							
	the social and	the social and physical sciences. This course begins with convex sets and							
	extrema of fun	ctions for a sound basis of the	he subject. It th	en develops into					
	LP problems in	ncluding Transportation and A	Assignment prol	olems.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge	Evaluation Tools used
CO1	Identify and analyse the properties of convex sets, including open and closed sets, convex hulls, and vertices.	An	Category#	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam
CO2	Demonstrate proficiency in applying optimization techniques such as gradient descent, constrained extrema, and the method of Lagrange multipliers to solve real-valued functions.	Ар	Р	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam
CO3	Formulate and solve linear programming problems, including transportation and assignment problems, using techniques such as simplex method and duality.	U	Р	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam
Factu	emember (R), Understand (U), Apply (A al Knowledge(F) Conceptual Knowledge vledge (M)			

Text book	-	ization Methods in Operation Research and System Analysis (4 th edition), K.V						
Module	Mittal, Unit	C Mohan, New Age International (P)Limited (2016) Content						
I	Umu	Module I						
I	1 Chapter 1 Section 11: Open and Closed sets in En							
	2	Section 12: Convex Linear Combination, Convex Sets						
	3	Section 12: Convex Entear Combination, Convex Bets						
	5	Section 13: Intersection of Convex Sets, Convex Turn of a Sec Section 14: Vertices or Extreme Points of a Convex Set						
	4	Section 15: Convex Polyhedron						
	-	Section 16: Hyperplanes, Half-spaces and Polytopes						
	5	Section 17: Separating and Supporting Hyperplanes (Proof of Theorem 18 is						
	5	optional)						
		Section 18: Vertices of a Closed Bounded Convex Set (Proof of Theorem						
		21,22,23 are optional)						
		Section 19: Summary						
		Section 19. Summary Section 20: Quadratic Forms						
II		Module II						
п	6							
	6	Chapter 2 Section 11: Convex Functions						
	7	Section 12: General Problem of Mathematical Programming						
	8	Chapter 3 Section 1: Introduction						
	-	Section 2: LP in Two-Dimensional Space						
	9	Section 3: General L P Problem						
		Section 4: Feasible Solutions (Proof of Theorem 1 is optional)						
		Section 5: Basic Solutions						
		Section 6: Basic Feasible Solutions (Proof of Theorem 2,3 are optional)						
		Section 7: Optimal Solution (Proof of Theorem 4,5 are optional)						
	10	Section 8: Summary						
	10	Section 9: Simplex Method						
		Section 10: Canonical Form of Equations						
		Section 11: Simplex Method (Numerical Example)						
		Section 12: Simplex Tableau						
	11	Section 13: Finding the First b.f.s; Artificial Variables						
		Section 14: Degeneracy						
	12	Section 15: Simplex Multipliers						
III		Module III						
	13	Chapter 3 Section 17: Duality in LP Problems						
	14	Section 18: Duality Theorems (Proof of Theorem 7,8,9, 10,11 are optional)						
		Section 19: Applications of Duality						
	15	Section 20: Dual Simplex Method						
		Section 21: Summary of Simplex Methods (III Revised Simplex Method is						
		optional)						
	16	Section 22: Applications of LP						

IV	Module IV							
	17	Chapter 4 Section 1: Introduction						
		Section 2: Transportation Problem						
		Section 3: Transportation Array						
		Section 4: Transportation Matrix						
		Section 5: Triangular Basis (Proof of Theorem 1 is optional)						
		Section 6: Finding a Basic Feasible Solution						
	18	Section 7: Testing For Optimality						
	19	Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional)						
		Section 9: Changing the Basis						
	20	Section 10: Degeneracy						
		Section 11: Unbalanced Problem						
	21	Section 14: Assignment Problem (Proof of Theorem 3 is optional)						
	22	Section 15: Generalized Transportation Problem						
		Exercise Questions in Assignment Problem						
V		Module V						
		Linear Programming Using Scipy, Prog Reference 1.						
		Dual Simplex Solved Programming Exercises in Python from Vanderbei						
		(Reference 1), Prog Reference 2.						
		Linear Programming in Python using IBM CPlex Community Edition. Prog						
		Reference 3.						
		Transportation Problem in Python. Prog Reference 4.						
		Linear Programming in Julia. Prog Reference 5. Ch 3 Basics of Julia Programming						
		Language, Ch 5 The Simplex Method.						
	. References:							
	1. G. Hadley : Linear Programming Addison-Wesley Pub Co Reading, Mass (1975							
	T. G. Hadley . Ellear Frogramming Addison-Wesley Fub Conceading, Mass (1975)							
	2. S.S. Rao : Optimization – Theory and Applications (2nd Edn.) Wiley Eastern (P							
	New De	elhi.						
	3. Ru	ssel L Ackoff and : Fundamentals of Operation Research Maurice W.Sasioni Wiley						
		n Ltd. New Delhi. (1991)						
		and a C. Deightlan , Foundations of Optimization D.T. Dhiling & D. J. Wilds (Ond						
	4. Charles S. Beightler, : Foundations of Optimization D.T. Philips & D.J. Wilde (2nd Edn.) Prentice Hall of India, Delhi (1979)							
	Programming References for Open-Ended section:							
		ar Programming using Scipy, https://python.quantecon.org/lp_intro.html						
		derbei's book homepage: <u>https://vanderbei.princeton.edu/LPbook/</u>						
		ex Jupyter Notebook:						
		github.com/IBMDecisionOptimization/tutorials/blob/master/jupyter/Linear_Program						
	<u>ming.ip</u>							
	Installa	tion: http://ibmdecisionoptimization.github.io/docplex-doc/README.md.html						
L	1							

4. Solving Transportation Problem using Linear Programming in Python:
https://machinelearninggeek.com/solving-transportation-problem-using-linear-
programming-in-python/
5. Changhyun Kwon, Julia Programming for Operations Research 2/e,
https://www.softcover.io/read/7b8eb7d0/juliabook2/simplex

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	-	1
CO 2	3	3	3	2	2	1	3	1	3	-	1
CO 3	2	3	3	2	3	1	3	1	3	-	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours					
Course Code	MAT6EJ305					
Course Title	TOPOLOGY OF METRIC SPACES					
Type of Course	Elective					
Semester	VI					
Academic Level	300 - 399					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	1. Fundamental Mathematics Concepts: Set, Functions, Logic					
	2. Real Analysis					
Course	This course familiarises students with the basic tools and phenomenology of					
Summary	topology by introducing metric spaces as a generalisation of the familiar					
	Euclidean spaces.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools		
		Level*	Category#	used		
CO1	Demonstrate understanding of	U	С	Internal		
	fundamental concepts in metric			Exam/Assignment/		
	spaces and basic examples of			Seminar/ Viva /		
	metric spaces.			End Sem Exam		
CO2	Analyse and evaluate the basic	An	Е	Internal		
	topology of metric spaces,			Exam/Assignment/		
	including open sets, closed sets,			Seminar/ Viva /		
	interior, closure, and boundary			End Sem Exam		
	points					
CO3	Demonstrate proficiency in	Ар	Р	Internal		
	applying concepts of			Exam/Assignment/		
	convergence, completeness, and			Seminar/ Viva /		
	continuity in metric spaces,			End Sem Exam		
	including formulating Cauchy					
	sequences, completeness, and					
	continuity of functions.					
* - Rer	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)					
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)						
Metaco	ognitive Knowledge (M)					

Textbook	Introduction to Topology and Modern Analysis, George F. Simmons, KriegerPublishing Company (1982) ISBN-0-89874-551-9				
Module	Unit	Content	Hrs (48+ 12)		
Ι		Module I	,		
	1	Chapter 1 Section 5: Partitions and Equivalence Relations			
	2	Chapter 1 Section 6: Countable Sets			
	3	Chapter 1 Section 7: Uncountable Sets			
	4	Chapter 2 Section 9: The Definition and Some Examples (Topics up to and	12		
		including Example 2)	_		
	5	Chapter 2 Section 9: The Definition and Some Examples (Topics from Example 3 onwards)			
II		Module II			
	6	Chapter 2 Section 10: Open Sets (Topics up to and including Theorem A)			
	7	Chapter 2 Section 10: Open Sets (Theorem B and Theorem C)	-		
	8	Chapter 2 Section 10: Open Sets (Theorem D and Theorem D onwards)	10		
	9	Chapter 2 Section 11: Closed Sets (Topics up to and including Theorem C)	-		
	10	Chapter 2 Section 11: Closed Sets (Topics from Theorem D onwards)			
III		Module III			
		1			
	11	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Topics up to Theorem A)			
	12	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Theorem A and Theorem B)			
	13	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Topics from Theorem C onwards)	12		
	14	Chapter 2 Section 13: Continuous Mappings (Topics up to and including Theorem A)	14		
	15	Chapter 2 Section 13: Continuous Mappings (Theorem B and Theorem C)	-		
	16	Chapter 2 Section 13: Continuous Mappings (Theorem D and Theorem D	-		
		onwards)			
IV		Module IV			
	17	Chapter 2 Section 14: Spaces of Continuous Functions (Topics up to First Lemma)			
	18	Chapter 2 Section 14: Spaces of Continuous Functions (First Lemma,	-		
	19	Second Lemma)Chapter 2 Section 14: Spaces of Continuous Functions (Topics from	_		
	19	Theorem A onwards)	14		
	20	Chapter 2 Section 15: Euclidean and Unitary Spaces (Topics up to First Lemma)	14		
	21	Chapter 2 Section 15: Euclidean and Unitary Spaces (First Lemma, Second Lemma)			
	22	Chapter 2 Section 15: Euclidean and Unitary Spaces (Topics from Theorem A onwards)			
		1			

The Heine-Borel Property	
V (Open Ended)Bolzano-Weierstrass Property Lebesgue's Covering Lemma Sequential Compactness Compactness – Open Cover Formulation Total Boundedness Compactness, Completeness & Total Boundedness Equicontinuity & the Arzela-Ascoli Theorem	12

- 1. Introduction to General Topology, K. D. Joshi, New Age International.
- 2. A First Course In Topology, James R. Munkres, Prentice Hall of India
- 3. Topology of Metric Spaces, S. Kumaresan, Narosa Publishing House.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	1	3	1	2	1	3	-	1
CO 2	3	3	1	1	3	1	3	1	3	-	1
CO 3	3	3	2	1	3	1	3	1	3	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours						
Course Code	MAT6EJ306							
Course Title	INTRODUCT	INTRODUCTION TO FOURIER ANALYSIS						
Type of Course	Elective							
Semester	VI							
Academic Level	300-399							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	An introductor	y course in Real Analysis inc	luding series of	functions				
Course	Fourier analysi	s is a fundamental componen	t in the tool-kit	of every pure and				
Summary	applied mathe	matician with numerous ap	plications to si	gnal processing,				
	image processi	ng, tomography and several o	other areas of en	gineering. In this				
	course we shall	course we shall look at the most basic theoretical foundations of this subject.						
	Along the way	we shall have to recapitulate s	some of the requ	isite results from				
	functional anal	ysis.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Demonstrate proficiency in defining and applying concepts related to inner product spaces, including orthogonality and linear operators.	Ap/An	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
CO2	Describe orthogonality, including definitions and examples. Demonstrate the use of orthogonal projections, including the Gram- Schmidt orthogonalization process.	Ар	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam				
CO3	Compute Fourier series on various intervals including cosine and sine expansions, and apply the complex form of Fourier series.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
# - Fac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Text		Course in Wavelets with Fourier Analysis, 2e, Albert	Boggess	s and			
Book							
Module	Unit						
Ι		12					
		Quick review through the preface of the text book for the discussions Fourier Analysis and Wavelets					
	1	0.1 and 0.2 – Motivation, definition and examples of inner product.					
	2	0.3 – The spaces L ² and ℓ^2 – 0.3.1 - Construction of inner products in L ² and ℓ^2 .					
	3	0.3.2 – Convergence in L ² versus uniform convergence.					
	4	0.4 – Schwarz Inequality					
	5	0.4 - Triangle Inequality					
	6	0.5 – Orthogonality 0.5.1 – Definitions and examples.					
	7	0.5.2 – Orthogonal Projections – up to and including example 0.23					
II		Module II	12				
	8	0.5.2 – Orthogonal Projections – rest of the section					
	9	0.5.3 – Gram – Schmidt Orthogonalization.					
	10	0.6 – Linear Operators and their Adjoints					
		0.6.1- Linear Operators					
	11	0.6.2 - Adjoints - (up to and including Example 0.31)					
	12	0.6.2 – Adjoints – rest of the section.	1				
III		Module III	12				
	13	1.1 – Introduction (1.1.1 to 1.1.3)					
	1			1			

	14	1.2 – Computation of Fourier Series	1
		1.2.1 – On the interval [$-\pi$, $+\pi$] – with examples	
	15	1.2.2 – Other intervals – with examples	
	16	1.2.3 – Cosine and Sine expansions with examples	
	17	1.2.5 – The complex form of Fourier Series	
	exa mo	dules III and IV are presented only for motivations as mples for the theory. All the proofs of theorems in the dules are optional to study and exempted from externa mination.	se
IV		Module IV	12
	18	2.1 – Informal development of the Fourier transform	
		2.1.1 – Fourier Inversion Theorem	
	19	2.2.2 – Fourier Transform of a convolution	
	20	2.2.3 – Adjoint of the Fourier Transform	
	21	2.2.4 – Plancherel Theorem	
	22	More problems from the above sections	
		Module V	12
V (Open		Wiodule V	

References

- 1. Ten lectures on Wavelets, Daubechies, Philadelphia, SIAM, 1992.
- 2. Fourier Analysis and its Applications, Gerald B Folland, Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, California.
- 3. Introduction to Fourier Analysis on Euclidean Spaces, Elias M Stein and Guido -Weiss, Princeton University Press.
- 4. How to make Wavelets, Robert S. Strichartz, The American Mathematical Monthly.

Note: 1) Optional topics are exempted for end semester examination. 2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	1	3	-	1
CO 2	3	3	2	1	3	1	3	1	3	-	1
CO 3	3	3	2	1	3	1	3	1	3	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	~	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours						
Course Code	MAT8EJ401							
Course Title	ADVANCED TOPOLOGY							
Type of Course	Elective							
Semester	VIII							
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4	0	60				
Pre-requisites	1. Topology I		-					
Course	The advanced topo	ology course extends Topo	ology I by intro	oducing further				
Summary	concepts and tools	s. It starts with the produ	ct topology ar	nd explores its				
	properties. Embedo	dings, including the Tycho	noff embeddin	g theorem, are				
	discussed. Urysohr	n's Lemma from the previo	us course is us	ed to prove the				
	Urysohn Metrisation	on Theorem. Nets and filt	ers are introdu	ced to address				
	sequence limitation	ns. Various forms of compa	actness and con	mpactifications				
	are examined, with	a focus on their relation to o	completeness ir	n metric spaces.				
	The course conclu	des with important results	s such as the	Baire category				
	theorems.							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Learn basic structures and	U	F	Internal
	constructions in Topology			Exam/Assignment/
				Seminar/ Viva / End Sem
				Exam
CO2	Analyse and apply the concepts	An	Р	Internal
	of Nets, Filters, and			Exam/Assignment/
	Convergence in the context of			Seminar/ Viva / End Sem
	Topological Spaces			Exam
CO3	Develop the student's ability to	Ар	С	Internal
	handle abstract ideas of			Exam/Assignment/
	mathematics and			Seminar/ Viva / End Sem
	mathematical proofs			Exam
* - Rei	member (R), Understand (U), Appl	y (Ap), Analy	yse (An), Evalu	ate (E), Create (C)
# - Fac	ctual Knowledge(F) Conceptual Kr	nowledge (C)	Procedural Kn	owledge (P)
Metac	ognitive Knowledge (M)			

Text Book		Introduction to General Topology, 2 nd Edition, K. D. Joshi, New Age International Publishers, 1983.								
Module	Unit	Content	Hrs (48+12)	External Marks (70)						
Ι		Module I	10							
	1	Cartesian Products of Families of Sets – 8.1								
	2	The Product Topology – 8.2								
	3	Productive Properties – Separation Axioms 8.3								
	4	Productive Properties – Connectedness – 8.3								
	5	Countably Productive Properties – Metrisability– 8.4								
	6	Countably Productive Properties – Countability– 8.4								
	7	The Case of Separability – 8.4								
Π		Module II	10							
III	8	Evaluation Functions into Products – 9.1								
	9	Embedding Lemma – 9.2								
	10	Tychonoff Embedding – 9.2								
	11	The Urysohn Metrisation Theorem – 9.3								
		Module III	12							
	12	Definition & Convergence of Nets – 10.1								
	13	Topology & Convergence of Nets – 10.2								
	14	Nets & Compactness – 10.2								
	15	Filters & Their Convergence – 10.3								
	16	Topology & Filters – 10.3								
	17	Ultrafilters and Compactness – 10.4								

IV		Module IV	16	
	18	Variations of Compactness – 11.1		
	19	The Alexander Sub-base Theorem – 11.2		
	20	Local Compactness – 11.3		
	21	Compactifications – 11.4 (Wallman Compactification 11.15 to 11.20 may be relegated to Practicum)		
	22	Complete Metrics – 12.1		
	23	Consequences of Completeness – 12.2		
	24	Completions of a Metric – 12.4		
V	Module V Practicum		12	
	1Wallman Compactification: 11.15 to 11.20			
	2 12.3: Some Applications (of Completeness)			
	3 Chapter 13: Category Theory			
	4 Chapter 14: Uniform Spaces			
	5	Chapter 15 Section 2: Paracompactness		
	6	Chapter 15 Section 3: Use of Ordinal Numbers		
	7	Nagata-Smirnov Metrisation Theorem		

References

- 1. Topology, J. R. Munkres, Prentice Hall of India, 2000.
- 2. General Topology, S. Willard, Addison Wesley Pub. Company, 1976.
- 3. General Topology, J. L. Kelley, D. van Nostrand, 1955.
- 4. Introduction to Topology and Modern Analysis; G. F. Simmons, McGraw-Hill, 1963.
- 5. Topology, James Dugundji, Prentice Hall of India, 1975.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	1	2	1	3	-	1
CO 2	3	3	2	1	3	1	3	1	3	-	1
CO 3	3	3	3	3	2	1	2	1	2	-	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	~
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours							
Course Code	MAT8EJ402								
Course Title	PARTIAL DI	PARTIAL DIFFERENTIAL EQUATIONS							
Type of Course	Elective								
Semester	VIII								
Academic Level	400-499								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	1. Real Analysi Equations	is 2. Basic Concepts of Vector	or functions 2. (Ordinary Differential					
Course Summary	This introductory Partial Differential Equations (PDEs) course equips students with the mathematical tools and problem-solving skills necessary to analyse and solve real-world phenomena governed by PDEs. The syllabus focuses on analytical methods for solving first and second-order PDEs, laying the foundation for further exploration of advanced PDEs and their applications.								

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Explain basic concepts, definitions, and mathematical problems related to first-order quasilinear equations.	U	С	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam						
CO2	Analyse and evaluate the classification of second-order linear equations, including the Cauchy problem and wave equations.	An	Е	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam						
CO3	Evaluate solutions for boundary value problems and apply them in solving PDEs.	E	Р	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam						
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 									

2 Classifica 3 Construct 4 Geometric 5 Method or 5 Method or Sections from To II 6 Second or 7 Canonical	Module I cepts, definitions and mathematical problems ion of first order equations on of a first order equation al Interpretation of a First- Order Equation characteristics and General solutions	9				
2 Classification 3 Construct 4 Geometric 5 Method or Sections from To II 6 6 Second or 7 Canonical 8 Equations	ion of first order equations on of a first order equation al Interpretation of a First- Order Equation Characteristics and General solutions					
3 Construct 4 Geometria 5 Method or Sections from To II 6 6 Second or 7 Canonical 8 Equations	on of a first order equation al Interpretation of a First- Order Equation C characteristics and General solutions					
4 Geometric 5 Method or 5 Method or Sections from Te II 6 6 Second or 7 Canonical 8 Equations	al Interpretation of a First- Order Equation					
5 Method or 5 Method or Sections from To II 6 Second or 7 Canonical 8 Equations	characteristics and General solutions					
II 6 Second of 7 Canonical 8 Equations						
II 6 Second of 7 Canonical 8 Equations	wt. 1 2 1 3 2 1 2 2 2 2 2 4 2 5					
6 Second of7 Canonical8 Equations	Sections from Text: 1.2, 1.3, 2.1, 2.2, 2.3, 2.4, 2.5.					
7Canonical8Equations	Module II					
8 Equations	der equations in two independent variables					
	Forms					
9 General S	with constant coefficients					
	olutions					
10 The Cauch	ny Problem					
11 Homogen	eous Wave Equations					
12 Initial Bou	ndary-Value Problems					
13 Equations Conditions	with Nonhomogeneous Boundary					
14 Vibration						
15 Nonhomo 16 The Riem	of Finite String with Fixed Ends		1			

	Section	ons from Text: 4.1 - 4.4, 5.1, 5.3-5.8					
III		Module III	13				
	17	Introduction					
	18	Separation of Variables					
	19	The Vibrating String Problem					
	20	Existence and Uniqueness of Solution of the Vibrating String Problem					
	21	The Heat Conduction Problem					
	22	Existence and Uniqueness of Solution of the Heat Conduction Problem					
	23	The Laplace and Beam Equations					
	24 Nonhomogeneous Problems						
	Sections from Text: 7.1-7.8 Module IV						
IV		7					
	25	Boundary Value Problems					
	26	Maximum and Minimum Principles					
	27	Uniqueness and Continuity Theorems					
	28						
	29 Neumann Problem for a circle						
	30	Dirichlet Problem for a rectangle					
	31	The Neumann Problem for a Rectangle					
	Section						
V (Open Ended)		12					
		Green's Functions for Ordinary Differential Equations, Construction of Green's Functions, The Dirac Delta Function, Properties of Green's Functions, Method of Green's Functions (only for Laplace operator) Nonlinear PDEs -brief overview from any text					

References:

1. Partial Differential Equations -An Introduction, Second Edition, Walter A. Strauss, John Wiley and Sons Limited.

2. Partial Differential Equations-Classical Theory with a Modern Touch, A.K. Nandakumaran, P.S. Datti, Cambridge-IISc Series.

3. Elements of Partial Differential Equations, I.N. Sneddon, McGraw-Hill, New York (1972).

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	-	1
CO 2	3	3	2	1	3	1	3	1	3	-	1
CO 3	2	3	2	1	3	1	3	1	3	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT8EJ403	MAT8EJ403					
Course Title	RINGS AND N	MODULES					
Type of Course	Elective						
Semester	VIII						
Academic	400-499						
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Elementary nur	nber theory, algebra, combined	natorics, basic	linear algebra			
Course	This course is a	This course is a self-contained elementary introduction to Rings and Modules.					
Summary	The course will	The course will cover basic topics of Ring Theory and Module Theory which is					
	a core course in	Algebra					

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
GO1		Level*	Category#	used
CO1	Define and differentiate	U	С	Internal
	between various types			Exam/Assignment/
	of rings, including rings			Seminar/Viva/End
	of continuous functions,			Sem Exam
	matrix rings and			
	polynomial rings			
CO2	Analyse and apply the	An	Ар	Internal
	concepts of ideals			Exam/Assignment/
	within rings, including			Seminar/ Viva / End
	definitions, maximal			Sem Exam
	ideals, generators for			
	subrings and ideals.			
CO3	Evaluate and synthesize	Е	М	Internal
	the concepts of			Exam/Assignment/
	homomorphisms of			Seminar/ Viva / End
	rings, including quotient			Sem Exam
	rings, ideals in quotient			
	rings, endomorphism			
	rings and field of			
	fractions.			
* - Remen	uber (R), Understand (U), A	Apply (Ap), Analys	e (An), Evaluate (E),	, Create (C)
	Knowledge(F) Conceptua			
Knowledg	0 1		U	

Text book	Int	House	, 2001.	
Module	Unit	Content	Hrs	Ext.
			(48 +12)	Marks (70
I		Module I	+12)	(70
1	1	Chapter 1 – Section 1.1: Terminology		
	2	Chapter 1 – Section 1.2: Rings of Continuous functions	-	
	3	Chapter 1 – Section 1.3 to 1.5: Matrix Rings, Polynomial Rings		
	5	and Power series rings	12	
	4	Chapter 1 – Section 1.8 to 1.9: Some Special Rings and Direct		
		Products		
	5	Chapter 1 – Section 1.10 to 1.12: Several Variables, Opposite		
		rings, Characteristic of a ring		
II		Module II		
	6	Chapter 2 – Section 2.1 to 2.2 : Definitions, Maximal Ideals		
	7	Chapter 2 – Section 2.3: Generators for subrings and Ideals	12	
	8	Chapter 2 – Section 2.4: Basic Properties of Ideals		
	9	Chapter 2 – Section 2.5: Algebra of Ideals		
III		Module III		
	10	Chapter 2 – Section 2.6 & 2.7 : Quotient rings and Ideals in		
	11	Quotient rings	-	
	11	Chapter 3 – Section 3.1: Definition and Basic Properties	10	
	12	Chapter 3 – Section 3.2 : Fundamental Theorems of	12	
	12	Homomorphisms		
	13	Chapter 3 – Section 3.3: Endomorphism Rings		
	14 15	Chapter 3 – Section 3.4: Field of Fractions Chapter 3 – Section 3.5: Prime Fields	-	
IV	15	Module IV		
1 V	16	Chapter 5: Modules: Section 5.1: Definition and Examples	-	
	10	Chapter 5: Notuces: Section 5.1: Definition and Examples Chapter 5: Section 5.2 to 5.4: Direct sums, Free Modules and	-	
	17	Vector spaces	12	
	18	Chapter 5: Section 5.4 to 5.3: Direct sums and Free Modules		
	19	Chapter 5: Section 5.6: Quotient Modules		
	20	Chapter 5: Section 5.7: Homomorphisms		
	21	Chapter 5: Section 5.8: Simple Modules		
V		Module V		
			12	
	Artin	ian Modules and Rings, Noetherian Modules and Rings, Nil		
	Radi	cal, Jacobson Radical		
References	1	. John B. Fraleigh, A First Course in Abstract Algebra, 7th Editio	on.	
	_	2002	,	
	2	. M. Artin: Algebra, Prentice Hall, 1991		
	3			
	4		enagae	
	4	Learning, 2009.	engage	
	5	. D.M. Burton, A First Course in rings and ideals, Addison-West 1970.	ley,	

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	-	1
CO 2	2	3	2	1	3	1	3	1	3	-	1
CO 3	2	2	2	1	3	1	3	1	3	-	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours							
Course Code	MAT8EJ404	MAT8EJ404						
Course Title	CODING THEORY							
Type of Course	Elective	Elective						
Semester	VIII	VIII						
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Linear Algebra, Alge	ebra						
Course Summary	The course helps the student to understand various algebraic codes, - their encoding and decoding methods and the mathematical tools used in their design.							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used					
		Level*	Category#						
CO1	Construct the parity check/generator	Ар	С	Internal					
	matrix of a linear code.			Exam/Assignment/					
				Seminar/ Viva / End					
				Sem Exam					
CO2	Calculate bounds on rate and	An	Р	Internal					
	distance of a given linear code using			Exam/Assignment/					
	various bounds.			Seminar/ Viva / End					
				Sem Exam					
CO3	Design cyclic codes of a given rate	Ар	Р	Internal					
	and distance parameters and decode			Exam/Assignment/					
	using various standard decoding			Seminar/ Viva / End					
	procedures.			Sem Exam					
* - Rer	nember (R), Understand (U), Apply (A	p), Analyse (An), Evaluate (E), Create (C) #					
Factu	Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Knowl	edge (M)								

Text		an, W. Cary, and Vera Pless. Fundamentals Cambridge university press, 2010.	of error-corr	ecting
Module	Unit	Content	Hrs (48+12)	External Marks (70)
Ι		Module I	12	
	Text Se 1.11.2	ections: 1.1, 1.2, 1.4, 1.5.1 to 1.5.3, 1.8, 1.10,		
	1	Binary and Prime Fields		
	2	Linear Codes - Generator and Parity Check Matrix		
	3	Weights and Distances		
	4	Punchuring, Shortening and Extension		
	5	Hamming Codes		
	6	Reed Muller Codes		
	7	Encoding Linear Codes		
II		Module II Text Sections: 2.2, 2.4, 2.8	5	
	8	Plotkin Bound		
	9	Singleton Bound and MDS codes		
	10	Gilbert - Varshamov Lower Bound		
	11	Asymptotic Singleton and Plotkin Bounds		
III		Module III Text Sections: 3.1 to 3.7 and 4.1, 4.2, 4.5.	15	
	12	Finite fields and elementary properties		
	13	Polynomials and Euclid's Algorithm		
	14	Primitive Elements		
	15	Construction of Finite fields		

	16				
	16	Cyclotomic Polynomials	4		
	17	Basic Theory of Cyclic Codes			
	18	BCH Bound.			
IV	Те	Module IV ext Sections: 5.1, 5.2, 5.3, 5.4.1 to 5.4.3	16		
	18	BCH Codes			
	19	Reed Solomon Codes and their generalization.			
	20	Peterson–Gorenstein–Zierler Decoding Algorithm			
	21	Berlekamp Massey Decoding Algorithm			
	22	Sugiyama Decoding Algorithm (Euclid's Algorithm)			
V		Module V	12	-	
	1	List decoding and Guruswami Sudan Algorithm			
	2	Weight Distributions of Codes and McWilliams Identities			
	3	Self-dual codes.			
	4	Codes on Projective Planes			
	5	Codes over Z4			
	6	Convolutional Codes			
References	ferences 1. E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes. London: Cambridge University Press, 1993.				
	2. R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley, 1983.				

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	-	3	1	2	1	3	-	1
CO 2	3	2	2	-	3	1	3	1	3	-	1
CO 3	3	3	2	-	3	1	3	1	3	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours						
Course Code	MAT8EJ405							
Course Title	AXIOMATIC FO	DUNDATIONS OF MAT	HEMATICS					
Type of Course	Elective							
Semester	VIII							
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial	Practical	Total				
		per week	per week	Hours				
	4	4	-	60				
Pre-requisites	Nil							
Course	The course goes	into the philosophy of ma	athematics, mo	odern axiom				
Summary	methods, controve	methods, controversies in set theory around axiom of choice, its						
	implications and various philosophical alternative approaches to the							
	foundations of mat	hematics.						

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Analyse Axiomatic	An	С	Internal				
	Systems and Logical			Exam/Assignment				
	Deductions			/ Seminar/ Viva /				
				End Sem Exam				
CO2	Apply Axioms and their	Ap	С	Internal				
	Interpretation of			Exam/Assignment				
	Mathematical Structures			/ Seminar/ Viva /				
				End Sem Exam				
CO3	Evaluate properties of	E	Р	Internal				
	standard sets in			Exam/Assignment				
	Mathematics and obtain			/ Seminar/ Viva /				
	their axiomatic			End Sem Exam				
	constructions							
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - F								
Metaco	ognitive Knowledge (M)							

TEXT: R. W 1967	ilder, Int	roduction to the Foundations of Mathematics (2/e), Joh	n Wiley	' & Sons,
Module	Unit	Content	Hrs	Ext. Marks
			(60)	(70)
Ι	Modul	e I (Up to Chapter 3 Section 5 of Text Book)	12	
	1	Description - undefined terms, axioms, logical deductions and proofs. Case study with axioms of points and lines.		
	2	Axioms and Interpretation (models): consistency (satisfiability), completeness, categorically and independence.		
	3	Case Study with axioms of order and equivalence.		
	4	Sets and Russal's Paradox.		
	5	Finite and Infinite Sets,		
	6	Review of Mathematical Induction.		
Π	Modul Book)	e II (Chapter 3, Section 6 to Chapter 4 of Text	12	
	7	Infinite Sets - Ordinary and Dedekind Infinity and their equivalence		
	8	Axiom of Choice		
	9	Countable Sets and their properties		
	10	Diagonalization and Uncountable Sets, Irrational Numbers		
	11	Cardinal Numbers and Bernstein's Equivalence Theorem		
	12	Well Ordered Sets and Transfinite Induction		
III	Modul	e III (Chapter 5)	12	
	13	Well Ordering Theorem		
	14	Ordinals and Burali-Forti Paradox		
	15	Properties of Ordinals and Continuum Hypothesis		
	16	Equivalence of Axiom of Choice, Well Ordering Theorem.		
	17	Zorn's Lemma and Equivalence with Axiom of Choice		
IV	Modu	le IV (Chapter 6 of Text Book)	12	
	18	Ordering and Separability of Reals, and Dedekind Cuts.		

	19	Axiomatization of Real Numbers: Constituency, Independence and						
	20 Categoricalness of Real Number Axioms.							
	21 Definition of Real numbers from Peano's Axioms							
	22 Complex Numbers.							
V		Module V						
	1	Abstractions: Groups/Rings/Fields/Vector Spaces						
	2	Zermelo Fraenkel Axiomatization of Set Theory						
	3	Frege-Russell Thesis Set Theory using Predicate Calculus						
	4	Brower's Intuitionist Theory						
		5 Formal Deductions and Godel's Theorems.						

1. I. M. Copi, Symbolic Logic (5/e), Pearson, 2015.

2. U. C. Merzbach and C. B. Boyer, A History of Mathematics, (3/e), 2011.

3. I. Stewart and D. Tall, The foundations of Mathematics, (2/e), Oxford University Press 2015.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	3	3	3	-	-	3
CO 2	3	3	2	1	3	3	3	3	-	-	3
CO 3	3	3	2	1	3	3	3	3	-	-	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	✓
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathem	atics Honours						
Course Code	MAT8EJ406	MAT8EJ406						
Course Title	OPERATION	IS RESEARCH						
Type of Course	Major							
Semester	VIII							
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic Mathem	atical and Statistical knowled	lge.					
Course	This paper on	Operation Research introdu	ices the concept	ts like minimum				
Summary	path problem i	path problem in network analysis, integer linear programming problem and						
	dynamic progr	dynamic programming problem. Kuhn Tucker condition to solve nonlinear						
	programming p	problem is also discussed.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Solve Minimum Path Problem, Maximum flow problem	U	C	Internal Exam/ Assignment / Seminar/ Viva / End Sem Exam				
CO2	Apply ILP and MILP	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO3	Apply Kuhn-Tucker Conditions to solve nonlinear programming problem	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
- Factu	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

-		ion Methods in Operation Research and System Analysis n, New Age International (P) Limited (2016)	(4 th edit	ion), KV
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
I		Module I	14	
	1	5.1,5.2 - Graphs Definitions and Notation		
	2	5.3- Minimum Path Problem		
	3	5.4- Spanning tree of minimum length		
	4	5.5- Problem of Potential Difference		
	5	5.6- Scheduling of sequential activities		
	6	5.7 Maximum flow problem		
	7	Generalized Problem of Maximum flow		
II		Module II	10	
	8	6.1, 6.2-Introduction, ILP in two dimensional space		
	10	6.3-General ILP and MILP problems		
	11	6.4- Examples of ILP in two dimensional space		
	12	6.5,6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method		
III		Module III	11	
	14	8.1, 8.2-Introduction, Lagrangian Function: Saddle Point,		
	15	8.3- Relation between Saddle Point of $F(X, Y)$ and Minimal point of $f(X)$		
	16	8.4- Kuhn-Tucker Conditions		
	17	8.5- Primal and Dual Problems		
	18	8.6-Quadratic Programming		
IV		Module IV	13	
	19	10.1,10.2- Introduction, Problem 1: A Minimum Path Problem		

	20	10.3-Problem II: Single Additive Constraint, Additively Separable Return		
·	21	10.4, 10.5-Problem III: Single Multiplicative Constraint, Additively Separable Return, Problem IV: Single Additive Constraint, Multiplicatively Separable Return		
	22	10.6,10.7-Computational Economy in DP, Serial Multistage Model		
	23	10.8, 10.9-Examples of Failure, Decomposition		
	24	10.10-Backward and Forward Recursion		
V		Open Ended	12	
	Sensit variab Deleti progra			
Reference	es:			

G. Hadley: Linear Programming Addison-Wesley Pub Co Reading, Mass (1975)
 G. Hadley: Non-linear and Dynamic Programming Wiley Eastern Pub Co. Reading, Mass (1964)

3. S.S. Rao : Optimization – Theory and Applications (2nd Edn.) Wiley Eastern (P) Ltd. New Delhi.

4. Russel L Ackoff and : Fundamentals of Operation Research Maurice W.Sasioni Wiley Eastern Ltd. New Delhi. (1991)

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	1	1	1	2	-	1
CO 2	3	3	1	1	2	1	1	1	2	-	1
CO 3	2	3	2	1	2	1	1	1	2	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours						
Course Code	MAT8EJ407							
Course Title	CRYPTOGRA	PHY						
Type of Course	Elective							
Semester	VIII							
Academic Level	400-499							
Course Details	Credit Lecture/Tutorial Practical Total Hours							
		per week	per week					
	4	4	-	60				
Pre-requisites	Elementary nur	nber theory, algebra, combin	natorics, basic l	inear algebra				
Course Summary	 Elementary number theory, algebra, combinatorics, basic linear algebra Cryptography is a fundamental aspect of information security that involves creating secure communication by encoding messages to make them unintelligible to unauthorised users and Cryptography relies heavily on mathematical concepts. This course covers a wide range of topics, starting with Classical Cryptography, which includes simple cryptosystems. It also delves into cryptanalysis of these systems. Moreover, the course includes a section on Cryptographic Hash Functions, focusing on their role in ensuring data integrity. Students gain a comprehensive understanding of these concepts and techniques, equipping them with the knowledge and skills needed to analyze and implement secure cryptographic systems. 							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Construct the parity check/generator matrix of a linear code. Design cyclic codes of a given rate and distance parameters.	С	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO2	Calculate bounds on rate and distance of a given linear code using various bounds.	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3 Decode a cyclic code using various standard decoding procedures.		Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
* - Reme	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factu	al Knowledge(F) Conceptua	l Knowledge (C) P	rocedural Knowledge	e (P) Metacognitive			
Knowled	lge (M)						

Textbook	Cryptograp	ny Theory and Practice 3 rd Edition, Douglas R. Stinson,	Chapman	& Hall
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Module I		
	1	Chapter 1: Section 1.1-1.1.1: Some Simple		
		Cryptosystems, Shift Cipher	_	
	2	Chapter 1: Sections 1.1.2 & 1.1.3: The Substitution		
		Cipher, Affine Cipher	12	Min.15
	3	Chapter 1: Sections 1.1.4 & 1.1.5: The Vigenere		
		Cipher, The Hill Cipher		
	4	Chapter 1: Sections 1.1.6 : The Permutation Cipher		
	5	Chapter 1: Sections 1.1.7 : Stream Ciphers		
II		Module II		
	6	Chapter 1: Section 1.2 & 1.2.1 : Cryptanalysis:		
		Cryptanalysis of the Affine Cipher	_	
	7	Chapter 1: Section 1.2.2 : Cryptanalysis of the	10	N.C. 15
		Substitution Cipher	12	Min.15
	8	Chapter 1: Section 1.2.3 : Cryptanalysis of the		
		Vigenere Cipher		
	9	Chapter 1: Section 1.2.4 : A known plain textattack		
	10	on the Hill Cipher	_	
	10	Chapter 1: Section 1.2.5 : Cryptanalysis of theLFSR-		
III		based Stream Cipher. Module III		
111	11	Chapter 2 : Sections 2.1, 2.2 : Introduction,		
	11	Elementary Probability Theory		
	12	Chapter 2 : Sections 2.3: Perfect Secrecy	10	Min.15
	12	Chapter 2 : Sections 2.3: Fencer Secrecy Chapter 2 : Sections 2.4: Entropy, HuffmanEncodings	10	11111.1.5
	13	Chapter 2 : Sections 2.5: Properties of Entropy	_	
	14	Chapter 2 : Sections 2.5: Properties of Entropy Chapter 2 : Sections 2.6: Spurious Keys andUnicity	_	
	15	Distance		
	16	Chapter 2 : Sections 2.7: Product Cryptosystems	_	
IV	10	Module IV		
1 4	17	Chapter 3: Sections 3.1 and 3.2 : Introduction,	_	
	17	Substitution - Permutation Networks		
	18	Chapter 3: Sections 3.3 (3.3.1 to 3.3.3): Linear	14	Min.15
	10	Cryptanalysis	11	101111.10
	19	Chapter 3: Sections 3.4 : Differential Cryptanalysis	-	
	20	Chapter 3: Sections 3.5 (3.5.1,3.5.2) : Data	-	
	20	Encryption Standard (DES), Description of DES,		
		Analysis of DES		
V		Module V		
		Cryptographic Hash Functions	12	
References	1. Jeffrev Ho	offstein: Jill Pipher, Joseph H. Silverman, An Introduction		1
	•	tical Cryptography, Springer International Edition.		
		V. (1994) A course in Number Theory and Cryptography, (S	SecondEd.),
	Springer-		,	

3. Yan, S. Y. (2003) Primality Testing and Integer Factorization in Public-Key
Cryptography, Springer
4. H. Deffs & H. Knebl: Introduction to Cryptography, Springer Verlag, 2002
5. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone: Handbook of
Applied Cryptography, CRC Press, 1996.
6. William Stallings: Cryptography and Network Security Principles and
Practice, Third Edition, Prentice-hall India, 2003.
7. D. Boneh and V. Shoup: <u>A Graduate Course in Applied Cryptography</u> (V 0.5)
8. J. Katz and Y. Lindell. <i>Introduction to Modern Cryptography</i> (2nd edition)

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	3	3	3	-	-	3
CO 2	3	3	1	1	3	3	3	3	-	-	3
CO 3	2	3	2	1	3	3	3	3	-	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours					
Course Code	MAT8EJ408						
Course Title	INTRODUCTIO	N TO FRACTALS					
Type of Course	Elective						
Semester	VIII						
Academic	400 - 499	400 - 499					
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total			
		per week	per week	Hours			
	4	4	0	60			
Pre-requisites	1. Calculus						
	2. Geometry						
Course	This course equips students with a thorough understanding of metric						
Summary	spaces and the mathematical foundations of fractal geometry, blending						
	theoretical insights	s with practical applications		-			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used			
		Level*	Category#				
CO1	Formulate basic concepts to build fractals	U	С	Internal Examination/ Assignment/ End Sem examination			
CO2	Interpret the dimension of fractals	An	Р	Internal Examination/Seminar/ Assignment/ Report/ End Sem examination			
CO3	Develop how to construct fractals and apply them	Ар	М	Internal Examination/Seminar/ Report/ End Sem examination			
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Know	vledge (M)						

Text Book	Fract	als Everywhere, (2/e), Michael F Barnsley, Dover Pu	blications,	2012
Module	Unit	Content	Hrs (48+12)	External Marks(70)
Ι		Module I	15	18
	1	Chapter II, Section 2:- Metric spaces		
	2	Section 3: - Cauchy Sequences, Limit Points, Closed		
		Sets, Perfect Sets, and Complete Metric Spaces	_	
	3	Section 4: - Compact Sets, Bounded Sets, Open Sets,		
	4	and Boundaries	-	
	4	Section 5: - Connected Sets, Disconnected Sets, and Pathwise-Connected Sets		
II		Module II	15	17
п	5	Section 6: - The Metric Space (H(X), h): The Space		17
	6	Where Fractals Live Section 7: - The Completeness of the Space of Fractals – up to Theorem 7.1	-	
	7	Section 7: - The Completeness of the Space of Fractals – From Theorem 7.1 onwards.		
	8	Chapter III, Section 1 – Transformations on the Real line – up to definition 1.3		
	9	Section 1: – Transformations on the Real line – from definition 1.3 onwards.		
	10	Section 2: – Affine Transformations in the Euclidean Plane		
	11	Section 6: – The Contraction Mapping Theorem		
III		Module III	8	18
		Section 7: - Contraction Mappings on the Space of als - up to definition 7.1		
	13: - 3	Section 7: – Contraction Mappings on the Space of als – from definition 7.1 onwards		
		Section 8: – Two Algorithms for Computing Fractals		
		Iterated Function Systems Section 10: – How to Make Fractal Models with the		
		of the Collage Theorem.		
		Chapter V, Section 1: – Fractal Dimension – up to]	
		rem 1.2		
		Chapter V, Section 1: – Fractal Dimension – from		
	Theor	rem 1.2 onwards.		
IV	10	Module IV	10	17
	18	Section 2: – The Theoretical Determination of the		
	19	Fractal Dimension – up to Theorem 2.1(including) Section 2: – The Theoretical Determination of the	-	
	17	Fractal Dimension – rest of the section.		
	20	Section 3: – The Experimental Determination of the	-	
	20	Fractal Dimension.		
	21	Section 4: – The Hausdorff-Besicovitch Fractal Dimension – up to and including Theorem 4.2	1	

r		1	
	22 Section 4: – The Hausdorff-Besicovitch Fractal		
	Dimension – rest of the section		
V	Module V	12	
	Applications of Fractal functions, Fractal interpolation		
	functions, Space filling curves, Construction of Iterated		
	function systems, Applications of Fractals in medical		
	imaging		
References	1. The Fractal Geometry of Nature, Benoît B.		
	Mandelbrot, W.H. Freeman and Company, 1982.		
	2. Chaos and Fractals: New Frontiers of Science, (2/e),		
	Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar		
	Saupe, Springer, 2004		
	3. Fractals: Form, Chance, and Dimension, Benoît B.		
	Mandelbrot, W.H. Freeman and Company, 1977.		
	4. Fractals Everywhere, (2/e), Michael F. Barnsley,		
	Academic Press, 1993.		
	5. An Introduction to Fractals and Chaos, Michael F.		
	Barnsley, Cambridge University Press, 2021.		
	· · · ·		

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	1	2	2	2	1	1
CO 2	3	3	1	1	2	1	2	2	2	1	1
CO 3	3	2	2	1	2	1	2	2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	√	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

RESEARCH METHODOLOGY

Programme	B. Sc. Mathematics Honours							
Course Code	MAT8CJ489							
Course Title	RESEARCH METHODOLOGY IN MATHEMATICS							
Type of Course	Major	Major						
Semester	VIII							
Academic Level	400 - 499							
Course Details	Credit	Practicum	Total Hours					
		per week	per week					
	4	4	-	60				
Pre-requisites	1. Mathematical Logic2. Research Aptitude	and necessary exposure to	set theory.					
Course Summary	MAT8CJ489, "Research Methodology in Mathematics," is designed to equip students with the essential skills and knowledge required for conducting research in mathematics effectively. This course focuses on various aspects of mathematical research, including axiomatic set theory, writing mathematics, researching and presenting findings, and using LaTeX for mathematical typesetting. Additionally, students explore open-ended research topics, allowing them to delve into specific areas of interest within mathematics. Throughout the course, students engage with key texts and resources, enabling them to develop a comprehensive understanding of research methodologies in mathematics.							

CO	CO Statement	Cognitive Level*	Knowledg e	Evaluation Tools used				
			Category#					
CO1	Develop competence in mathematical writing.	U	Р	Internal Examination/ Assignment/ End Sem examination				
CO2	Apply Research Skills and Presentation Techniques	Ар	Р	Internal examination/ Seminar/ Assignment/ End Sem examination				
CO3	Use LaTeX to create and typeset documents.	Ар	Р	Internal Examination/Seminar/ Assignment/End Sem examination				
* - Ren	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # -							
	Knowledge(F) Conceptual Knowledge (C) Procedu							

Text Book	(1): Naive set theory: Paul R. Halmos, Courier Dover Publications, 2017.							
Doon		student's guide to the study, practice, and tools of Id Bindner and Martin Erickson. CRC Press, ISBN: 97		-				
Module	Unit	Content	Hrs (48+12)	External Marks (70)				
Ι		Module I	12					
		(Sections 1 to 12 from the Text 1.)						
		1: The axiom of extension						
		2: The axiom of specification						
		3: Unordered pairs						
		4: Unions and intersections						
		5: Complements and powers						
		6: Ordered pairs						
		7: Relations						
		8: Functions						
		9: Families						
		10: Inverses and composites						
		11: Numbers						
		12: The Peano axioms						
П		Module II (Text 2)	12					
		Chapter 1: How to Learn Mathematics		_				
		(A quick review – not part of evaluation)						
		Chapter 2: How to Write Mathematics -		-				
		2.1: What is the goal of mathematical writing?						
		2.2: General principles of mathematical writing						
		2.3: Writing mathematical sentences						
		2.4 : Avoiding error						
		2.5: Writing mathematical solutions and proofs						

	2.6: Writing longer mathematical works		
	2.7: The revision process		
Ш	Module III (Text 2)	12	
-	Chapter 3: How to Research Mathematics -		
	3.1: What is mathematical research?		
	3.2 : Finding a research topic		
	3.3: General advice		
	3.4: Taking basic steps		
	3.5: Fixing common problems		
	3.6: Using computer resources		
	3.7: Practicing good mathematical judgment		
	Chapter 4: How to Present Mathematics -		
	4.1: Why give a presentation of mathematics?		
	4.2: Preparing your talk		
	4.3: DOs and DON'Ts		
	4.4: Using technology		
	4.5 : Answering questions		
	4.6: Publishing your research		
IV	Module III (Text 2)	12	
-	LaTeX		
	9.4 How to create and typeset a simple LATEX document		
	9.5 How to add basic information to your document		
	9.6 How to do elementary mathematical typesetting		
	9.7 How to do advanced mathematical typesetting		
Ļ	9.8 How to use graphics		
	PsTricks		

	10.1 What is PSTricks?		
	10.2 How to make simple pictures		
	10.3 How to plot functions		
	10.4 How to make pictures with nodes		
	Beamer		
	11.1 What is Beamer?		
	11.2 How to think in terms of frames		
	11.3 How to set up a Beamer document		
	11.4 How to enhance a Beamer presentation		
V	Module V	12	
	Lecturer's choices from the following		
	Reference 1 (Princeton Companion), Section 1.4: General Goals of Mathematical Research, p.48 to 78.		
	 Solving Equations Classifying Generalizing Discovering Patterns Explaining Apparent Coincidences Counting and Measuring Determining Whether Different Mathematical Properties are Compatible Working with Arguments that are not Fully Rigorous Finding Explicit Proofs and Algorithms What do you find in a Mathematical Paper? 		
	Reference 2 (Math Unlimited), any chapters of the lecturer's choices.		
	Reference 3 (Krantz, Mathematical Writing), any topics of lecturer's choice.		
Reference	1. The Princeton companion to mathematics, Timothy Gowe University Press, 2008, ISBN ISBN 978-0-691-11880-2.	ers, Ed., Princ	eton
	 Math Unlimited, Essays in Mathematics, Editors: R. Sujat C S Yogananda, CRC Press, 2012, ISBN: 978-1-57808-70 A Primer of Mathematical Writing, Steven G. Krantz, 2nd 	04-4.	·
	9781470436582.		

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	1	2	3	2	3	2	3	1	2
CO 2	1	2	-	3	3	3	3	2	3	1	3
CO 3	-	1	3	1	2	2	3	3	2	1	2

Mapping of COs with PSOs and POs :

Mapping of COs to Assessment Rubrics:

	Internal Exam			End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark

MULTI-DISCIPLINARY COURSES

(MDC)

Programme	B. Sc. Mathematics Honours								
Course Code	MAT1FM105(1)								
Course Title	MATRICES AND	MATRICES AND BASICS OF PROBABILITY THEORY							
Type of Course	MDC								
Semester	Ι								
Academic Level	100 - 199								
Course Details	Credit	Lecture/Tutorial	Practical	Total					
		per week	per week	Hours					
	3	3	-	45					
Pre-requisites	Basic Arithmet	ic and Computational Skil	11.						
Course		es and Basics of Probabili							
Summary	-	sive understanding of two							
	1	and probability. The sylla	e						
	•	ices, covering operations s							
	-	erminants, and inverses,	• •	-					
	.	equations. Transitioning to		•					
		concepts, conditional pro	-						
	-	es, and various counting		•					
		basic statistics, includin							
	measures of central	l tendency and variation, a	and measures of	position.					

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Explain the concepts of			Internal
	matrices and		~	Exam/Assignment
	determinants.	U	С	/ Seminar/ Viva /
				End Sem Exam
CO2	Apply matrix theory to			Internal
	solve systems of			Exam/Assignment
	equations.	Ар	Р	/ Seminar/ Viva /
				End Sem Exam
CO3	Explain concepts like			Internal
	measures of central			Exam/Assignment
	tendency, measures of	U	C	/ Seminar/ Viva /
	variation, measures of			End Sem Exam
	position and probability.			
* - Rei	member (R), Understand (U), Apply (Ap), A	Analyse (An), Eval	uate (E), Create (C)
# - F	actual Knowledge(F) Cond	ceptual Knowle	dge (C) Procedu	ral Knowledge (P)
Metaco	ognitive Knowledge (M)			

Texts:

1. John Bird, Bird's Higher Engineering Mathematics 9/e, Routledge, ISBN: 978-0-367-64373-7, 2021.

2. Ron Larson & Betsy Farber, Elementary Statistics, Picturing the World 6/e, Pearson Education, ISBN: 978-0-321-91121-6, 2015.

Module	Unit	Content	Hrs (36+ 9)	Ext. Marks (50)
Ι				
	1	Section 20.1 - Matrix notation		
	2	Section 20.2 - Addition, subtraction and multiplication of matrices		
	3	Section 20.3 to 20.4 - The unit matrix, The determinant of a 2 by 2 matrix.	9	Min 10
	4	Section 20.5 - The inverse or reciprocal of a 2 by 2 matrix.		
	5	Section 20.6 - The determinant of a 3 by 3 matrix		
	6	Section 20.7 - The inverse or reciprocal of a 3 by 3 matrix		
II		Module II (from Text 1)		
	7	Section 21.1 - Solution of simultaneous equations by matrices		
	8	Section 21.2 - Solution of simultaneous equations by determinants	9	Min 10
	9	Section 21.3 - Solution of simultaneous equations using Cramer's rule		
	10	Section 21.4 - Solution of simultaneous equations using the Gaussian elimination method.		
Ш		Module III (From Text 2)		
	11	Section 1.1 to 1.2 - An Overview of Statistics, Data Classification		

	12	Section 2.1 - Frequency Distributions and their Graphs	9	Min 10
	13	Section 2.3 - Measures of Central Tendency		
	14	Section 2.4 - Measures of Variation		
	15	Section 2.5 - Measures of Position		
IV				
	16	9	Min 10	
	17	Section 3.2 - Conditional Probability and the Multiplication Rule.		
	18	Section 3.3 - The Addition Rule.		
	19	Section 3.4 - Additional topics in probability and counting.		
V		Module V		
	Data and D and 2	9		

References:

1. Advanced engineering mathematics, 10/e, Erwin Kreyszig, Wiley, 2011.

2. Introduction to Linear Algebra with Applications, Jim DeFranza and Daniel Gagliardi, Waveland Press, 2015.

3. Elementary Statistics, 13/e, Mario F. Triola, Pearson Education, 2018.

4. Elementary Statistics, 8/e, Neil A. Weiss, Pearson Education, 2012.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	-	3	1	3	2	2	1	2
CO 2	3	-	3	1	3	2	3	1	2
CO 3	3	-	3	1	2	2	3	1	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	~	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT2FM106(1)						
Course Title	GRAPH THEOR	Y AND LPP					
Type of Course	MDC						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total			
		per week	per week	Hours			
	3	3	-	45			
Pre-requisites	Basic Arithmetic a	nd Geometry.					
Course	The course "Gra	ph Theory and Linear	Programming'	' introduces			
Summary	fundamental conc	epts in graph theory fo	cusing initiall	y on graph			
	definitions, proper	ties, and structures such as	vertex degrees	s, subgraphs,			
	paths, and cycles.	The discussion extends to tr	ees, bridges, sp	anning trees,			
		connectivity, emphasizing		-			
	-	roviding proofs for brevi	-	-			
		course employs graphical		-			
	-	optimization problems, pr		-			
		complex maximization ar		-			
	• •	and nonstandard scenarios.	•	•			
	-	exploration into graph	modellingmix	ture, matrix			
	representations, an	d connector problems.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Use the fundamental concepts in graph theory.	U	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam				
CO2	Analyse properties of graphs and trees.	An	Р	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam				
CO3	Solve linear programming problems by geometrically and Simplex method.	Ap	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam				
Factua	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Texts:

1. John Clark & Derek Allan Holton, A First Look at Graph Theory: Allied Publishers, First Indian Reprint 1995.

2. Margaret L. Lial, Raymond N, Finite Mathematics and Calculus with Applications 9/e, Greenwell & Nathan P. Ritchey Pearson Education, Inc, ISBN 0-321-74908-1, 2012.

Module	Unit	Content	Hrs	Ext. Marks
			(36 +9)	(50)
Ι		Module I (from text 1)		
	1	Section 1.1 - Definition of a graph.		
	2	Section 1.3 - More definitions.	9	Min 10
	3	Section 1.4 - Vertex degrees.		
	4			
	5	Section 1.6 - Paths and Cycles (Theorem 1.4 statement only).		
II		Module II (From Text 1)		
	6	Section 2.1 - Definitions and Simple Properties of trees (Proof of Theorem 2.1, 2.2 and 2.4 omitted).		
	7	Section 2.2 - Bridges: up to and including Theorem 2.8 (Theorem 2.6 and 2.7 are statement only).	9	Min 10
	8	Section 2.2 - Bridges (Theorem 2.9 statement only) contd.	9	Min 10
	9	Section 2.3 - Spanning trees (Theorem 2.12 statement only).		
	10	Section 2.6 - Cut Vertices and Connectivity (Theorem 2.20 and Theorem 2.21 are statements only).		
III		Module III (From Text 2)		
	11	Section 3.1 - Graphing Linear Inequalities.		
	12	Section 3.2 - Solving Linear Programming Problems Graphically; up to and including Example 2.	9	Min 10
	13	Section 3.2 - Solving Linear Programming Problems Graphically contd.		

	14	Section 3.3 - Applications of Linear Programming; up to and including Example 2.				
	15	Section 3.3 - Applications of Linear Programming contd.				
IV		Module IV (from text 2)				
	16	Section 4.1- Slack Variables and the Pivot.				
	17	Section 4.2- Maximization Problems.	9	Min 10		
	18	Section 4.3- Minimization Problems; Duality.				
	19	Section 4.4- Nonstandard Problems.				
V		Module V				
	Graphs as models, Matrix representation of graphs, Connector problems (for instance refer sections from 1.2, 1.7 and 2.4 of Text 1).					
References:						
1. Introduction to Graph Theory, 4th ed., R.J. Wilson, LPE, Pearson Education, 1996.						

2. Graph Theory with Applications, J.A. Bondy & U.S.R. Murty, North-Holland, 1982

3. Linear Programming: Foundations and Extensions, 2/e, Robert J. Vanderbei, Springer Science+Business Media LLC, 2001.

4. An Introduction to Linear Programming and Game Theory (3/e), Paul R. Thie and G. E. Keough, John Wiley and Sons, 2008.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	1	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	~	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematic	s Honours							
Course Code	MAT1FM105(2)								
Course Title	MATHEMATICS	MATHEMATICS FOR COMPETITIVE EXAMINATIONS - PART I							
Type of Course	MDC								
Semester	Ι	Ι							
Academic Level	100 - 199	100 - 199							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	3	3	-	45					
Pre-requisites	Basic Arithmetic a	nd Computational Skill							
Course Summary	problem-solving s ranging from fund fractions, and roots	The course is designed to equip students with essential arithmetic and problem-solving skills required for competitive exams. It covers topics ranging from fundamental arithmetic operations such as number systems, fractions, and roots to more advanced concepts like financial mathematics, time-speed-distance calculations, and problem-solving techniques.							

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Apply mathematical methods to solve problems	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO2	Apply numerical skills in competitive examinations	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3	Manage time in competitive examinations.	Ap	М	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Module	Unit	Content	Hrs	Ext. Marks
			(36+ 9)	(50)
_		Module I		
I	1	Number System		
	2	Number Series		
	3	Simple and Decimal Fractions	9	Min 10
	4 HCF and LCM			
	5	Square root and Cube root		
II		Module II		
	6	Simplification		
	7	Average	0	Min 10
	8	Ratio and Proportion	9	wiin 10
	9	Problems based on ages		
	10	Percentage		
III		Module III		
	11	Profit and Loss		
	12	Discount		
	13	Simple Interest	9	Min 10
	14	Compound Interest		
	15	Work and Time		
IV		Module IV		
	16	Speed, Time and Distance		
	17	Problems based on trains	9	Min 10
	18	Boats and Streams		
	19	Clock and Calendar		

V	Module V	9						
	Mixture or Allegation, Partnership, Pipes and Cisterns							
References: 1. Fast Track Objective Arithmetic, Rajesh Verma, Arihant Publications India								
limited, 2	limited, 2018 (Primary Reference).							
2. Objecti	2. Objective Arithmetic for Competitive Examinations, Dinesh Khattar, Pearson Education, 2020.							
3. Quicker Objective Arithmetic, Dr Lal, Jain, Upkar's publication, 2010.								

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	-	3	2	3	2	3	1	2
CO 2	2	-	3	1	3	2	3	1	2
CO 3	2	-	2	2	2	2	2	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	√
CO 3	\checkmark	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours					
Course Code	MAT2FM106(2)					
Course Title	MATHEMATICS	S FOR COMPETITIVE E	CXAMINATIO	ONS - PART II		
Type of Course	MDC					
Semester	II					
Academic Level	100 - 199					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	3	3	-	45		
Pre-requisites	Basic Arithmet	ic and Computational Skill				
Course Summary	The course "Mathematics for Competitive Examinations - Part II" is designed to prepare students for competitive exams by focusing on various reasoning and problem-solving skills. It covers a range of topics including non-verbal reasoning, verbal reasoning, spatial reasoning, and abstract reasoning, each module addressing different aspects of these skill sets.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
	Apply mathematical			Internal			
CO1	methods to solve			Exam/Assignment/			
	problems	Ар	Р	Seminar/ Viva / End			
				Sem Exam			
	Relate the basic concepts			Internal			
CO2	of logical reasoning			Exam/Assignment/			
	Skills	U	Р	Seminar/ Viva / End			
				Sem Exam			
				Internal			
CO3	Manage time in			Exam/Assignment/			
	competitive examinations	Ар	М	Seminar/ Viva / End			
				Sem Exam			
* - Ren	nember (R), Understand (U),	Apply (Ap), Ana	alyse (An), Evaluat	e (E), Create (C)			
# - Fact	# - Factual Knowledge(F) Conceptual Knowledge(C) Procedural Knowledge(P) Metacognitive						
Knowle	edge (M)						

Detailed Syllabus:

Module	Unit	Content	Hrs	Ex
			(36+	Marks
		Module I	9)	(50)
Ι	1	Similarity of Pairs		10
	2	What come Next	9	Min 10
	3	Odd One out		
	4	Coding and Decoding		
	5	Ranking Test	1	
II		Module II		
	6	Blood relations		
	7	Blood relations Contd.	9	Min 10
	8	Direction Sense Test		
	9	Direction Sense Test contd.		
	10	Logical Venn Diagram		
III		Module III		
	11	Figure analogy		M: 10
	12	Figure series	- 9	Min 10
	13	Figure Classification		
	14	Mirror and Water Images		
	15	Counting of figures		
IV		Module IV		
	16	Cube and Dice	- 9	Mir 10
	17	Logical and Analytical Reasoning	_ y	Min 10
	18	Geometry mensuration		
	19	Data Interpretation		

V	Module V				
	Alphabet and Number Sequence Test, Paper folding and paper cutting	9			
Referenc	es:				
1. A Fast	Track Course in MENTAL ABILITY, Amogh Goel, Arihant Pul	olication	is India		
limited, 2	2016. (Primary Reference).				
2. The Me	2. The Mental Ability, Logical Reasoning & Problem-Solving Compendium for IAS Prelims				
General 3	Studies Paper 2 & State PSC Exams, Disha Experts, Disha Pu	blication	ns, 2018.		

General Studies Paper 2 & State PSC Exams, Disha Experts, Disha Publications, 2018.3. The Pearson Guide to Verbal Ability and Logical Reasoning for the CAT, Nishit K. Sinha, Pearson Education, 2014.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	2	1	2	-	1	1	-
CO 2	2	-	2	1	2	-	1	1	-
CO 3	0	1	2	1	2	-	1	1	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

•

- Assignment/ Seminar
 - Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	✓

SKILL ENHANCEMENT COURSES

(SEC)

Programme	BSc Mathematics Honours					
Course Title	INTRODUCTION TO PYTHON AND SCIENTIFIC COMPUTING					
Type of Course	SEC – Double	SEC – Double Major				
Semester	IV	IV				
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	3	3	-	45		
Pre-requisites	calculus with an	edge to start a desktop/lapto understanding of differenti algebra (higher secondary	ial and integral c			
Course Summary	programming. Ge Lists, Tuples, Fun and Strings and f the Python progra SageMath is give concepts from ca the open-ended p	duces the fundamentals of Pyt etting started with Python, Var netions, Branching, Input and inally Classes and Object-Orie amming structure, an introduc n in the last part of the course lculus and linear algebra are to ractical part so that the studen mpute typical problems from t	ious Interfaces, V Output, Arrays an ented Programmin tion to the advanc . Various practica o be solved using ts will come to kn	ariables, Modules, Loops, ad Plotting, Dictionaries ag are introduced. Using ed mathematics software l problems making use of the SageMath software in		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain Basics of Python Programming.	U	С	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam
CO2	Analyze Intermediate Level Concepts such as Object- Oriented Programming.	An	Р	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam
CO3	Evaluate Scientific Computation using SageMath.	E	Р	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam
	ber (R), Understand (U), Apply (A owledge(F) Conceptual Knowledg	-		

Textbook	SpringerBriefs on Computing, 2020, ISBN: 978-3-030-50 https://link.springer.com/book/10.1007/978-3-030-50356-7 2. Sage for Undergraduates, 2 nd Ed., Gregory V. Bard, 20 Mathematical Society, 2022. ISBN: 978-1470411114. 2014 Online Ed: http://www.people.vcu.edu/~clarson/ undergraduates-2014.pdf						
			(36+	Ext: 50			
			9)				
Ι		Module I (Text 1, Ch. 1, 2, 3, 4.)					
	1	Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2).	8				
	2	Formatting Text Output. Importing Modules. (Sec 2.3, 2.4).	-				
	3	Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).		Min.10			
	4	Iterating over a List with a for Loop Nested Lists and List Slicing. (Sec 3.4, 3.5).					
	5	Tuples. (Sec 3.6)					
II		Module II (Text 1, Ch. 4, 5).					
	6	Programming with Functions Function Arguments and Local Variables. Default Arguments and Doc Strings. (Sec 4.1, 4.2, 4.3)					
	7	If Tests for Branching the Program Flow. Functions as arguments to Functions. (Sec 4.4, 4.5)					
	8	Solving Equations with Python Functions. (Sec 4.6)		Min 10			
	9	Writing Test Functions to Verify Programs (Sec 4.7).	8				
	10	User Input and Error Handling. Reading Input User Data. Reading Data from Files. Writing Data to Files. (Sections 5.1, 5.3, 5.4. Section 5.2 omitted).	-				
	11	Handling Errors in Programs. (Sec 5.5)	-				
	12	Making Modules. (Sec 5.6)					

.

.

III	Module III (Text 1, Ch. 6, 7).						
	13Arrays and Plotting. Numpy and Array Computing. Plotting Curves with Matplotlib. (Sec 6.1, 6.2)						
	14 Plotting Discontinuous and Piecewise Defined Functions. (Sec 6.3).		Min 10				
	15 Dictionaries and Strings. Examples: A Dictionary for Polynomials, Reading File Data to a Dictionary. (Sec 7.1 7.2, 7.3),	7	WIII 10				
	16 String Manipulation (Sec 7.4).	-					
IV	Module IV (Text 1, Ch. 9, 10.)						
	17 Basics of Classes. (Sec 8.1)						
	18 Protected Class Attributes, Special Methods.						
	Example: Automatic Differentiation of Functions. (Sec 8.2, 8.3, 8.4).	7 Min 10					
	19 Test Functions for Classes. Example: A Polynomial Class. (Sec 8.5, 8.6).						
	20 Class Hierarchies and Inheritance.						
	Example: Classes for Numerical Differentiation, Integration. (Sec 9.1, 9.2, 9.3).						
V	Module V	-					
	Practical						
	Lecturer's selections of 15 sessions of 2 hours each from below.						
	Miscellaneous Python Exercises (Any 2 from the list)						
	1. Pitfalls of Programming, Text 1, Section 2.5.						
	Code, Virtual Environments, Jupyter Notebook, Google Colab Anaconda/Miniconda/Mamba, Replit.	 Familiarize various Python runtime environments and IDEs like IDLE, Spyder, VS Code, Virtual Environments, Jupyter Notebook, Google Colab, 					
	3. Familiarize various documentation websites and how to refer to the syntax and implementation of a Python concept or Package.						
	4. Case studies from Reference 2:, Income Tax Calculator (page 38), Investment						
	Report (p. 73), Approximating Square Roots. (p. 92), Text Analysis (p. 126), Generating Sentences (p. 150).						
	Sagemath (Any 2 from the list)						
	1. Getting and installing sagemath in Windows, Ubuntu OS Using	g sagemat	th using				
	cocalc (online).2. Using Sage as a Calculator, Using Sage with Common Function	ns, Using	Sage for				
	Trigonometry (Text 2, sections 1.1, 1.2, 1.3)	-					

3. Using Sage to Manipulate Polynomials (Text 2, section 1.7)
4. Matrices and Sage-A First Taste of Matrices, Doing the RREF in Sage
(Text 2, section 1.5)
5. Using Sage for 2-D graphs (Text 2, section 1.4)
 6. The Derivative, Slope of Tangent, Higher-Order Derivatives (Text 2, section 1.11)) 7. Antiderivatives (Indefinite Integral), Definite Integrals, Improper Integrals (Text 2, sec 1.12, upto sec 1.12.6))
Numerical methods using SageMath (Reference 5: Chapter 7)(7.1 - 7.10, 7.12) (Any 2 from the list)
1) Evaluate a Taylor series numerically.
2) Interpolate a function using
a) Newton's forward interpolation.
b) Newton's backward interpolation.
c) Lagrange's Interpolation.
d) Newton's General Interpolation.
3) Find integral of function using
a. Trapezoidal Rule
b. Simpson's 1/3-rule
4) Find derivative of function numerically.
5) Solve first order differential equations numerically.
a) Euler method
b) Fourth order Runge-Kutta method
6) Solve algebraic equations numerically.
a) The Bisection method
Regula Falsi Method

References

- 1. Python for Education, Ajith Kumar B. P., 2023 https://scischool.in/python/pythonForEducation.pdf
- 2. Fundamentals of Python First Programs, Kenneth A Lambert, 2 Ed., Cengage, 2018.
- 3. Sympy Tutorial: <u>https://docs.sympy.org/latest/tutorials/intro-tutorial/index.html</u> Solving Equations: <u>https://docs.sympy.org/latest/guides/solving/index.html</u>
- 4. Computational Mathematics with SageMath, Paul Zimmermann, Alexandre Casamayou, https://www.sagemath.org/sagebook/english.html
- 5. SageMath Advice For Calculus, Tuan A. Le and Hieu D. Nguyen, https://users.rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- 6. Sagemath Reference: <u>https://doc.sagemath.org/</u>

Programming Resources

- 1. Python official website: <u>https://www.python.org</u> Documentation: <u>https://docs.python.org/</u>
- 2. Spyder official website and documentation, <u>https://www.spyder-ide.org/</u>
- 3. MIT Courseware, Getting Started: Python and IDLE, https://web.mit.edu/6.s189/www/handouts/GettingStarted.html
- 4. Jupyter Notebook, <u>https://jupyter.org/</u>
- 5. Google Colaboratory (colab), <u>https://colab.google/</u>
- Visual Studio Code: <u>https://code.visualstudio.com</u>, Documentation: <u>https://code.visualstudio.com/docs</u> VS Code for Web: <u>https://vscode.dev/</u>
- 7. Replit, <u>https://replit.com/</u>
- 8. Python Virtual Environments: <u>https://docs.python.org/3/tutorial/venv.html</u>
- 9. Anaconda, Miniconda and Mamba. Anaconda: <u>https://docs.anaconda.com/free/anaconda/</u> Miniconda: <u>https://docs.anaconda.com/free/minicoda</u> Mamba: <u>https://mamba.readthedocs.io/en/latest/</u>
- 10. SageMathCloud at Cocalc: <u>https://cocalc.com</u> Documentation: <u>https://doc.cocalc.com/</u>

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	2	1	3	2	3	3	2	1	2
CO 2	3	3	2	2	3	2	3	3	2	1	2
CO 3	3	3	3	3	3	1	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	~	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Programme	B. Sc. Mathematics	B. Sc. Mathematics Honours						
Course Title	MATHEMATICAL TYPE SETTING SYSTEM - LATEX							
Course Code	MAT5FS112							
Type of Course	SEC (For Pathwa	nys 1 – 4)						
Semester	V							
Academic Level	300-399							
Course Details	Credit	Lecture/Tutorial	Practical	Total				
		non wools		Hours				
		per week	per week					
	3	3	-	45				
Pre-requisites	1. Fundamental Ma	thematics Concepts						
Course	The course will cov	ver topics such as documen	t formatting, m	nathematical				
Summary	typesetting, graphics and tables, bibliography management, beamer							
	presentation and un	presentation and understanding the Indian language transliteration						
	package for typeset	ting Sanskrit or Hindi or M	lalayalam usin	g LaTeX.				

СО	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Prepare a LaTex document with	Ap	С	Internal Exam/
	title page including contents,			Assignment/
	references and index			Seminar/ Viva /
				End Sem Exam
CO2	Construct documents with bullets,	Ар	С	Internal Exam/
	numbering and aligning or ordering			Assignment/
	and adding rows and tables			Seminar/ Viva /
				End Sem Exam
CO3	Use mathematical typesetting and	U	F	Internal Exam/
	equation environments to create			Assignment/
	professional looking equations and			Seminar/ Viva /
	mathematical notation			End Sem Exam
* - Rei	nember (R), Understand (U), Apply	(Ap), Analyse	e (An), Evalua	te (E), Create (C)
# - F	actual Knowledge(F) Conceptual	Knowledge (C) Procedural	Knowledge (P)
Metaco	gnitive Knowledge (M)			

Textbook	Edite Text 2	Text 1: LATEX TUTORIAL, A PRIMER by Indian TEX Users Group, Edited by E. Krishnan, 2003. Text 2: George Gratzer, More Math Into LaTeX-Springer 2016 (5 th Edition),							
Module	Unit	Content	Hrs (36+ 9)	Ex. Marks (50)					
Ι		Module I (Text-1)							
	1	The basics- Tutorial I							
	2	The documents – Tutorial II	8	Min 10					
	3	Bibliographic Database- Tutorial III & IV							
	4	Table of contents and Index- Tutorial V(Omit glossary)							
II		Module II							
	5	Displayed Text – Tutorial VI	6	Min 10					
	6	Rows and columns – Tutorial VII	Ũ						
	7	Tables – Tutorial VII .2							
III		Module III							
	8	Basic Mathematical equation- Tutorial VIII.1, VIII.2							
	9	Groups of Equations and numbering – Tutorial VIII.3							
	10	Matrices, dots, delimiters and affixing symbols- Tutorial VIII.4	10	Min 10					
	11	Operators, Equations, Symbols, notations, Greek letters etc. Tutorial VIII.5, VIII.6, VIII.7, VIII.8(In VIII.8 focus only on usual symbols, Greek letters, operations etc. commonly used in mathematics)							
IV		Module IV (Text-1 and 2)							
	12	Theorem in Latex – Tutorial IX.1							

Min 10

References:

- Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to LATEX 2ε (Online Link:- <u>The Not So Short Introduction to LaTeX</u> (oetiker.ch))
- 2) Harvey J. Greenberg, A simplified introduction to LaTeX (Online version)
- 3) Leslie Lamport (second edition. Addison Wiley,1994)- LaTeX, a Document Preparation System.
- 4) Donald Knuth (Addison-Wesley, 1984), The TeX book
- 5) Frank Mittelbach and Michel Goossens (second edition), Addison-Wesley, 2004).

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	-	1	1	2	2	1	-	2	3	-
CO 2	2	3	1	-	1	1	1	3	1	-	2	3	-
CO 3	3	2	1	-	1	1	2	1	1	-	2	2	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematic	s Honours					
Course Code	MAT6FS113(1)						
Course Title	DATA SCIENCE WITH PYTHON						
Type of Course	SEC (for pathwa	SEC (for pathways 1 – 5)					
Semester	VI	VI					
Academic Level	300 - 399						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	3	3	-	0	45		
Pre-requisites		A basic course in Python programming with the understanding of using looping, conditionals, creating variables, writing functions, and importing modules.					
Course Summary	Python. It will ena specific focus on h	This course is an advanced course for those who have learned the basics of Python. It will enable the students to learn more features of Python with a specific focus on how to use them to analyse data and arrive at conclusions in practical situations with the help of a reasonable knowledge of statistics.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Rearrange and manipulate various data structures in Python to make it more meaningful	U	F	Internal Exam/ Assignments / End Semester Examination		
CO2	Relate fundamentals of Statistics from a real-life point of view	U	F	Internal Exam/ Assignments / Quiz / End Semester Examination		
CO3	Visualize data for clearer understanding of practical situations	Ар	С	Internal Exam / Quiz / End Semester Examination		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						

Knowledge (M)

Note : Python IDLE (with necessary modules like pandas, scipy), Anaconda/Spyder package, Jupyter notebook interface or Google colab (free to use) interface, Pydroid 3 for android (along with Pydroid repository plugin) can be used for training purposes. Python version 3.10 or above should be used to avoid errors with some of the functionalities we discuss in the course.

Textbook	1 2	Publishing, 2015 2 Data Science from Scratch, Second Edition ,Joel Grus, O'Reilly, 2019							
Module	Unit	Content	Hrs (36+ 9)	Ext. Marks (50)					
	1	Exceptions, Lists.							
_	2	2 Tuples, Dictionaries.							
Ι	3 Counters, Sets, List Comprehensions,		8	Min 10					
	4	Truthiness, Automated Testing and assert Iterables and Generators							
	5	Randomness, Regular Expressions, zip and Argument Unpacking							
		8	Min 10						
П	6	NumPy: Mathematical operations, Array subtraction, squaring an array, A trigonometric function performed on the array, Conditional operations.							
	7	NumPy : Matrix multiplication, Indexing and slicing, Shape manipulation.							

	8	Pandas : Inserting and exporting data, CSV, Data cleansing, Checking the missing data.		
	9	Pandas : Filling the missing data, String operations, Merging data		
	10	Data operations: Aggregation operations, Joins, The inner join		
	11	Data operations: The left outer join, The full outer join, The groupby function		
		Module III (Text 1, Chapter 2)		
	12	Various forms of distribution, A normal distribution, A normal distribution from a binomial distribution.	10	NC 10
	13	A Poisson distribution, A Bernoulli distribution.	12	Min 10
III	14	A z-score, A p-value, One-tailed and two-tailed tests.		
	15	Type 1 and Type 2 errors, confidence interval.		
	16	Correlation, Z-test vs T-test, The F distribution.		
	17	The chi-square distribution, Chi-square for the goodness of fit, The chi-square test of independence, ANOVA.		
		Module IV (Text 1, Chapter 3)		
IV	18	What is data mining? Presenting an analysis.	8	Min 10
	19	Studying the Titanic – with all the required analysis		
		Module V	10	
V				
	1	Making Sense of Data through Advanced Visualization - Controlling the line properties of a chart		

	2	Using keyword arguments, Using the setter methods, Using the setp() command.
	3	Creating multiple plots, Playing with text, Styling your plots.
	4	Box plots, Heatmaps, Scatter plots with histograms.
	5	A scatter plot matrix, Area plots.
References	1 2 3 4 5 6 7 8 9 10	Thomas Nield, Essential Math for Data Science - Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics, O'Reilly Media, 2022 Wes McKinney, Python for Data Analysis_ Data Wrangling with pandas, NumPy, and Jupyter-O'Reilly Media, Third Edition, 2022 Fabio Nelli, Python Data Analytics- With Pandas, NumPy, and Matplotlib, Apress, Second Edition, 2018 https://www.kaggle.com/datasets/yasserh/titanic-dataset https://www.w3schools.com/datascience/ds_python.asp https://realpython.com/python-for-data-analysis/ https://realpython.com/python-for-data-science-with-python-tutorial/ https://learn.microsoft.com/en-us/training/modules/explore- analyze-data-with-python/1-introduction https://onlinecourses.nptel.ac.in/noc24_cs54/preview https://onlinecourses.nptel.ac.in/noc20_cs46/preview

Note: For detailed understanding of the topics given in Module II, additional reference 1 can also be used, though it is not very essential.

Roadmap:

Being a practice-oriented course, the teachers may introduce the students to more problems so as to familiarize them with the tools in which they have been trained through this course. Many good examples on how to use these in real life situations can be found in Chapter 13 of additional reference 2 and the URLs provided in the additional references section.

Mapping of COs with PSOs and POs :

	PSO 1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	3	1	3	2	3	3	1	1	1
CO 2	3	2	3	2	3	2	1	1	1	1	1
CO 3	3	2	2	1	3	1	3	3	1	-	1

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Quiz	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark		\checkmark	\checkmark

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Assignment
- Quiz
- End Semester Examinations

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT6FS113 (2	MAT6FS113 (2)					
Course Title	Scientific Prin	Scientific Principles & Practice					
Type of Course	SEC (for path	ways 1 – 5)					
Semester	VI	VI					
Academic	300 - 399						
Level							
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	3	3	-	-	45		
Pre-requisites	High School sc	ience					
Course	This course familiarises students with the basic principles and						
Summary	phenomenology	y of science an	d scientific re	esearch.			

	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Explain the scope,	U	С	Seminar				
	limitations, and			Presentation/				
	fundamental principles of			Group Tutorials				
	science and scientific							
	research.							
CO2	Relate the role of abstraction	U	М	Seminar				
	and critical thinking in			Presentation/				
	mathematics and science,			Group Tutorials				
	and how they contribute to			_				
	scientific							
	progress.							
CO3	Recognize the importance	U	С	Seminar				
	of proper experimental			Presentation/				
	design in conducting			Group Tutorials				
	effective scientific research.			-				
* - Re	member (R), Understand (U),	Apply (Ap), Anal	yse (An), Evaluate	(E), Create (C)				
	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metac	cognitive Knowledge (M)			-				

Text	The Scientific Endeavour – A Primer on Scientific Principle & Practice, 2 nd Edition, Jeffrey								
Book	A. Le	e (2016).							
Module	Unit	Content	Hrs	Marks					
			(36	(50)					
			+9)						
Ι		Module I	9	Min10					
	1	1.1: What is Science?							
	2	1.2: Areas of Science							
	3	1.3: Basic & Applied Research1.4: Why Understand Science?		_					
	4								
	5		_						
	6		_						
	7	2.3: Recent Development in the Philosophy of Science Module II							
II		9	Min10						
	8	3.1, 3.2: Selecting a Topic, Hypothesis3.3: Experimental Design							
	9								
	10		_						
	11								
	12	3.9: Non-experimental Research		_					
	13	4.1: Scientific Norms							
	14	4.2-4.5: Invisible Colleges, Peer Review, Reward System, Becoming a							
		Scientist							
III		Module III	9	Min10					
		ter 5 – Misconduct in Science		-					
	15	5.1: Fraud		-					
	16	5.2: Plagiarism		-					
	17	5.3: Questionable Research Practices							
	18	5.4: Research With Human & Animal Subjects		-					
	19	5.5: Whistleblowing							
	20	6.1: Critical Thinking Strategies		-					
	21	6.2: Common Fallacies							
IV		Module IV	9	Min10					
	22	Chapter 7: 7.1-7.9: - Common Pseudosciences		-					
	23	8.1: Science & Pseudoscience		_					
	24	8.2: The Need for Critical Thinking		-					
	25	8.3: A Sceptical Attitude							
	26	8.4: Evaluating Extraordinary Claims		-					
	27	9.1: The Scientific Knowledge Acquisition Web							
	28	9.2: Conclusions							
V		Module V	9						
	1	Flatland: A Romance of Many Dimensions, Edwin Abbott Abbott,							
		1884.							

	2 Mr. Tompkins in Paperback, George Gamow, Cambridge University Press, 1002								
		Press, 1993.							
	3	The Character of Physical Law, Richard Feynman, MIT Press, 2017.							
Reference	References:								
1. M	athema	atics & The Laws of Nature, John Tabak.							
2. T	he Sciei	ntific Method: A Historical & philosophical Introduction, Barry Gower							
3. H	3. History & philosophy of Science: A Reader, Daniel J. McKaughan & Holly VandeWall								
4. A	4. A Historical Introduction to the Philosophy of Science, 4th Edition, John Losee								
5. A	5. A Summary of Scientific Method, Peter Kosso								

6. The Nature of Physical Reality, Henry Margenau

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	2	3	2	3	2	3	2	3
CO 2	3	2	2	3	3	2	2	2	3	2	3
CO 3	2	1	3	2	3	2	3	2	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	✓	\checkmark	\checkmark	\checkmark	✓

VALUE-ADDED COURSES

(VAC)

Programme	B. Sc. Mathem	atics Honours					
Course Code	MAT3FV109(1)					
Course Title	HISTORY O	F MATHEMATICS					
Type of Course	VAC						
Semester	III						
Academic Level	200 - 299						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	3	3	-	45			
Pre-requisites	Aptitude for M	lathematics and its History.					
Course		The course goes into the philosophy of mathematics, modern axiom					
Summary		methods, controversies in set theory around axiom of choice, its					
	-	nd various philosophical a	lternative appr	oaches to the			
	foundations of	mathematics.					

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Analyse Key Mathematical	An	С	Internal Exam/
	Theorems and Concepts from			Assignment/
	Ancient to Early Modern Times			Seminar/ Viva /
				End Sem Exam
CO2	Evaluate and Compare Methods of	E	Р	Internal
	Addressing Infinity and Large			Exam/Assignme
	Cardinal Numbers			nt/ Seminar/ Viva
				/ End Sem Exam
CO3	Analyze the historical	An	С	Internal
	development and foundational			Exam/Assignme
	concepts of mathematics			nt/ Seminar/ Viva
				/ End Sem Exam
* - Re	emember (R), Understand (U), Apply	v (Ap), Analys	se (An), Evalua	ate (E), Create (C)
# -]	Factual Knowledge(F) Conceptual	Knowledge	(C) Procedura	Knowledge (P)
Metac	ognitive Knowledge (M)			

Textbook		ematics & Its History, 3 rd Edition, John Stillwell, Spi : 978-1-4419-6052-8.	ringer (20)10)	
Module	Unit	Content	Hrs (36+9)	Ext. Marks (50)	
Ι		Module I			
	Quick	Review of Ancient Mathematics			
	1	Chapter 1: Pythagoras Theorem			
	2	Chapter 2: Greek Geometry			
	3	Chapter 3: Greek Number Theory			
	Infinit	y in Greek Mathematics – Chapter 4			
	4	Section 4.1, 4.2-Fear of Infinity, Eudoxus' Theory of Proportions	9	Min 10	
	5				
	Sets &	z Logic – Chapter 24			
	6	Sections 24.1, 24.2, 24.4- Sets, Ordinals, Axiom of Choice & Large Cardinals			
	7	Section 24.3- Measure			
	8	Section 24.5-The Diagonal Argument			
	Biogra Archin	aphical Notes: Pythagoras, Euclid, Diophantus, nedes			
II		Module II			
	9	Section 9.1, 9.2-What is Calculus, Early Results on Areas & Volumes	9	Min 10	
	10 Section 9.3-Maxima, Minima & Tangents				
	11				
	12	Section 9.5-Newton's Calculus of Series			
	13	Section 9.6-The Calculus of Leibnitz			

	Biogra	aphical Notes: Wallis, Newton & Leibnitz		
III		Module III		
	Polyn			
	14			
	15	Section 6.3, 6.4 Quadratic Equations, Quadratic Irrationals		
	16	Section 6.5-The Solution of the Cubic	9	Min 10
	17	Section 6.6-Angle Division	-	
	18	Section 6.7-Higher Degree Equations		
	Biogra	aphical Notes: Tartaglia, Cardano & Viete		
	Comp	lex Numbers – Chapter 14		
	19	Section 14.1, 14.2, 14.3- Impossible Numbers, Quadratic & Cubic Equations		
	20	Section 14.4- Wallis' Attempt at Geometric Representation		
	21	Section 14.5, 14.6- The Fundamental Theorem of Algebra, The Proofs of d'Alembert & Gauss		
	Biogra	aphical Notes: d'Alembert		
IV		Module IV		
	22	Section 22.1, 22.2- Geometry & Topology, Polyhedron Formulas of Descartes & Euler		
	23	Section 22.3-The Classification of Surfaces		
	24	Section 22.4- Descartes & Gauss-Bonnet		
	25	Section Euler 22.5-Characteristic & Curvature	10	Min 10
	26	Section 22.7, 22.8- The Fundamental Group, The Poincare Conjecture		
	Biogra	aphical Notes: Poincare		
V		Module V	9	
	1	Hypercomplex Numbers – Chapter 20		

2	Number Theory in Asia – Chapter 5	
3	Mechanics – Chapter 13	
4	Complex Numbers & Functions – Chapter 16	
5	Non-Euclidean Geometry – Chapter 18	
6	Group Theory – Chapter 19	

References:

- 1. Mathematics, The Queen & Handmaiden of Sciences, E. T. Bell, McGraw Hill.
- 2. Men of Mathematics, E. T. Bell, Simon & Schuster, 1986.
- 3. What is Mathematics?, Richard Courant & Herbert Robbins,
- 4. History of Mathematics, 7th Edition, David M. Burton, McGraw Hill.
- 5. Mathematics In India, Kim Plofker, Princeton University Press, 2009.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	-	3	2	2	-	3	2	1
CO 2	3	2	1	-	2	1	2	-	2	1	-
CO 3	1	1	-	-	3	2	2	-	3	2	1

Correlation Levels:

Level	Correlation				
-	Nil				
1	Slightly / Low				
2	Moderate / Medium				
3	Substantial / High				

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	~
CO 2	~	\checkmark	\checkmark	✓	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours			
Course Code	MAT3FV109(2)				
Course Title	COMPUTATION	AL LOGIC			
Type of Course	VAC				
Semester	III				
Academic Level	200-299	200-299			
Course Details	Credit	Lecture/Tutorial	Practical	Total	
		per week	per week	Hours	
	3	3	-	45	
Pre-requisites	Nil				
Course	The course will cover the basics of propositional and predicate logic,				
Summary	Compactness, and	the Resolution Theory.			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Determine the Satisfiability of a	Ар	С	Internal			
	Propositional Formula Set.			Exam/Assignment			
				/ Seminar/ Viva /			
				End Sem Exam			
CO2	Apply Theorems of Propositional	Ар	С	Internal			
	Logic			Exam/Assignment			
				/ Seminar/ Viva /			
				End Sem Exam			
CO5	Discover Proofs of Major	An	М	Internal			
	Theorems of Logic			Exam/Assignment			
				/ Seminar/ Viva /			
				End Sem Exam			
* - Rem	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Fac	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)						
Metacog	nitive Knowledge (M)						

Text book	Logic	for Computer Scientists, U. Schoning, Birkhauser, 20)08 (Repr	int).
Module	Unit	Content	Hrs (45 = 36 +9)	Ext. Marks (50)
Ι		Module I (Chapter 1 of Text Book).		
	1	Syntax and Semantics, Truth Tables, Satisfiability and Validity.		
	2	Equivalence and Normal Forms, Substitution Theorem	10	Min 10
	3	DNF and CNF forms		
	4	Horn Formulas,		
	5	Compactness Theorem for Propositional Calculus		
	6	Resolution Theorem and Resolution Algorithm		
II	Mathe	Module II (Section 2.1, 2.2, Subsection on ematical Theories of Section 2.3)		
	7	Syntax of Predicate Logic		
	8	Semantics - Structures and Models, Satisfiability and Validity	9	Min 10
	9	Equivalence of formulas - Substitution, Variable Renaming.		
	10	Skolem Normal Form		
	11	Mathematical Theories - Axioms and Models.		
III		Module III (Section 2.4)		
	12	Herbrand Universe and Structures		
	13	Herbrand Model and Satisfiability Theorem		
	14	Skolem Lowenheim Theorem	9	Min 10
	15	Herbrand Expansion and Godel-Herbrand-Skolem Theorem		
	16	Compactness and Herbrand's Theorem		
IV		Module IV (Section 2.5)		
	17	Ground Resolution and Resolvants	8	Min 10
	18	Ground Resolution Theorem		

	19	Robinson's Unification Theorem and Algorithm		
	20	Lifting Lemma		
	21	Resolution Theorem for Predicate Logic		
V		Module V		
	1	Unsolvability of Predicate Logic (Section 2.3 on Text Book)	9	
	2	SLD Resolution (Section 2.6 of Text Book)		
	3	Introduction to Logic Programming		
	4	Horn Clause Programs		
	5	Evaluation Strategies for Horn Clause Programs.		
Referenc		lier, Logic for Computer Science - Foundations of Autom	atic Theor	em
		Dower. 2015.		

Proving, Dower, 2015.2. S. Reeves, M Clarke, Logic for Computer Science, Addition Wesley, 1990. coding

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	-	3	2	2	-	3	2	1
CO 2	3	2	1	-	2	1	2	-	2	1	-
CO 3	1	1	-	-	3	2	2	-	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics H	Ionours			
Course Code	MAT4FV110(1)				
Course Title	STATISTICS AND	MATHEMATICS WITH	R		
Type of Course	VAC				
Semester	IV				
Academic Level	200-299				
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours	
	per week per week				
	3	3	-	45	
Pre-requisites	1. Basic School (+2) 2. Basic Programmin				
Course Summary	2. Basic Programming Experience The "Statistics and Mathematics with R" course is designed to provide an understanding of R programming for statistical analysis and mathematical computation. The curriculum begins with an introduction to R, covering basic features, data storage, and manipulation techniques. Subsequent modules explore graphical visualization, programming constructs such as flow control and functions, and computational linear algebra. Each unit offers hands-on exercises and references to relevant sections in the textbook by Braun and Murdoch, supplemented by further reading materials for deeper exploration. This course helps students with practical skills in utilizing R for statistical analysis and mathematical modeling.				

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Demonstrate Proficiency in	U	Р	Internal Exam/				
	Basic and Intermediate R			Seminar/Assignment				
	Programming			/ End Sem Exam				
CO2	Create and Interpret Various	С	С	Internal Exam/				
	Types of Graphs Using R			Seminar/Assignment				
				/ End Sem Exam				
CO3	Apply Advanced Mathematical	Ap	Р	Internal Exam/				
	and Statistical Functions in R			Seminar/Assignment				
				/ End Sem Exam				
* - Ren	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Fact	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Knowle	edge (M)							

Textbook		Course in Statistical Programming with doch, Cambridge University Press, 3 rd Ed		
Module	Unit	Content	Hrs (36+9)	External Marks (50)
Ι		Module I		
	1	R Studio. R Command Line. R as calculator. Named Storage. Quitting R.		
	2	Basic Features of R.	10	
	3	Vectors in R.	12	Min 10
	4	Data Storage in R. Packages,		
	5	Libraries and Repositories.		
	6	Getting Help. Useful Features of R.		
	7	Data Frames, tibbles, and lists		
	8	Data Input and Output		
	Referen	nce: Chapter 2, Sections 1 to 10		
II		Module II		
	9	Bar Charts and Dot Charts. Pie Charts.		
	10	Histograms. Box Plots. Scatter Plots.	4	Min 10
	11	Plotting from Data Frames. Quantiles. QQ Plots.		
	Referen	nce: Section 3.1.		
III		Module III		
	12	Flow Control. For Loop. Examples 4.1 to 4.4.		
	13	If Statement. Examples.	12	NT 40
	14	Eratosthenes Sieve.	13	Min 10
	15	While Loop. Examples. Newton's Method.		

	16	Repeat loop. Break and Next Statements. Examples and Exercises.				
	17	Functions.				
	18	General Programming Guidelines				
	Referen	nce: Chapter 4, Sections 1-4.				
IV		Module IV				
	21	Vectors and Matrices in R				
	12	Matrix Multiplication and Inversion	7	Min 10		
	19	Eigenvalues and Eigenvectors				
	20	Singular Value Decomposition				
	Referen	nce: Sections 7.1, 7.2, 7.3, 7.4.1.				
V		Module V	9			
	 Section 3.2 - 3.4: Higher Level Graphics with ggplot Section 4.6: Debugging and Maintenance Section 4.7: Efficient Algorithms. Section 6.1: Monte Carlo, 6.2: Pseudo-Random Numbers Appendix A: Overview of Random Variables and Distributions Section 6.3: Simulation of Random Variables Section 8.3: Newton-Raphson Section 8.5: Linear Programming 					
Reference	 Roger D. Peng, R Programming for Data Science, LeanPub, 2022, ISBN 9781365056826. <u>https://bookdown.org/rdpeng/rprogdatascience/</u> Garrett Grolemund, Hands-On Programming with R, O'Reilly, 2014, ISBN 1449359019. https://rstudio-education.github.io/hopr/ Ruriko Yoshida, Linear Algebra and its Applications in R, Chapman and Hall, 2021, ISBN 9780367486846 					

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	2	2	2	2	2	1
CO 2	2	3	1	-	2	2	2	2	2	1	1
CO 3	1	1	3	2	2	2	2	2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathem	atics Honours							
Course Code	MAT4FV110	MAT4FV110(2)							
Course Title	THE MATHE	EMATICAL PRACTICES	OF MEDIEVA	AL KERALA					
Type of Course	VAC								
Semester	IV								
Academic Level	200 - 299								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	3	3	-	45					
Pre-requisites	1. Fundamen	tal Mathematics Concep	ots: Number	system,Basic					
	Mathematical	operations, Plane Geometry.							
	2. Convergenc	e of series of numbers and fu	nctions.						
Course	This course far	This course familiarises students with the traditional Indian Mathematics							
Summary	practised in the	e Medieval Kerala School of	Astronomy and	Mathematics.					

СО	CO Statement	Cognitiv	Knowledge	Evaluation
CO1	Explain the underlying fundamental principles of the traditional mathematics practised in medieval Kerala.	e Level* U	Category#	Tools used Seminar Presentation/ Group Tutorials
CO2	Demonstrate the role of thought process and working rules in mathematics.	U	С	Seminar Presentation/ Group Tutorials
CO3	Explain the usage of infinite series in mathematical analysis.	U	С	Seminar Presentation/ Group Tutorials
# -]	emember (R), Understand (U), A Factual Knowledge(F) Concept cognitive Knowledge (M)		-	

Text B	ook	 Lilavati of Bhaskaracarya Translated by K.S.Patwardhan, S.A. S.L.Singh, Motilal Banarsidass Publishers, Delhi. 2006. Ganita Yukti Bhasa of Jyesthadeva. Volume I. English Trans K.V.Sarma with explanatory notes by K.Ramasubramanian, N and M.S.Sriram. Hindustan Book Company, 2008. 	lation by	7
Module	Unit	Hours (36 +9)	Ext. Marks (50)	
Ι		Module I	9	14
	1	Computation of sides of a right triangle when one side is given.		
	2	Computation of area of triangles and quadrilaterals.		
	3	Computation of the perpendicular below the intersection of diagonals.		
	4	Approximating the surface area and volume of spheres.		
	5	Computation of sides of polygons inscribed in a circle.		
	6	Computation of the arcs and chords of circles.		
	-	ter 28 from Text I (Treatment based on English translations of Sanskrit s in Lilavati).		
п		Module II	9	12
	7	Volume of Solids	-	
	8	Volume of a heap of Grain	-	
	9	Shadows of Gnomon.	-	
	-	Pulverization ters 29, 30, 31, 32 and 33 from Text I (Treatment based on English ations of Sanskrit verses in Lilavati).		
III		Module III	10	14
	11	Circumference of a circle approximated by regular polygons.		
	12	Circumference of a circle without calculating square roots.	-	
	13	Circumference of a circle in terms of the hypotenuses.	-	
	14	Summation of Series.	-	
	15	Calculation of circumference. Conversion of the Rsine to Arc.	-	
	16 Sectio	ons 6.1 to 6.6 of Chapter 6 from Text II.	-	
IV		Module IV	8	10
	17	Some technical terms and derivation of Rsines.		
	18	Computation of Rsines.		
	19	Computation of Jya and Sara by sankalita and accurate circumference.		
	Section	ons 7.1 to 7.6 of Chapter 7 from Text II.		
V		Module V	9	
(Open Ended)	20	Decoding of important Sanskrit verses discussed in Modules I and II from Lilavati (Text I).		

21	Decoding of important Sanskrit verses discussed in Modules III and					
	IV from Yuktibhasa (Text II).					
22	Conversion of selected Rules discussed in Modules I to IV into					
	Computer Algorithms.					
Relevant Topics from Text I, Text II and References.						

References:

- 1. The Mathematics of India Concepts, Methods, Connections. P.P.Divakaran, Hindustan Book Agency, New Delhi, 2018.
- 2. A Passage to Infinity Medieval Indian Mathematics from Kerala and its Impact. George Ghevarghese Joseph, Sage Publications, New Delhi, 2009.
- 3. On an Untapped Source of Medieval Keralese Mathematics. C.T.Rajagopal and M.S.Rangachari, Archive for the History of Exact Sciences, 35 (2), (1986), 91 99.
- 4. Yukthibhasha. Rama Varma Maru Thampuran and A.R.Akhileswara Iyer (Editors)}, Mangalodayam Press, Trichur 1948.
- 5. Tantrasangraha of Nilakantha Somayaji with Yuktidipika and Laghuvivrti of Sankara. K.V.Sarma, Vishveshvaranand Visva Bandhu Institute of Sanskrit and Indological Studies, Punjab University, Hoshiarpur 1977.
- 6. Colebrook's translation of the Lilavati with Notes by Haran Chandra Banerji. The Book Company, Calcutta, 1927.
- 7. Mathematical Treasures Lilavati of Bhaskara. Frank J.Swetz and Victor J.Katz. Loci. 2011.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	1	3	2	1	-	2	3	-
CO 2	2	3	1	2	2	3	1	-	2	3	-
CO 3	2	2	2	2	2	1	1	-	2	2	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

VOCATIONAL MINORS

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours							
Course Code	MAT1VN101	MAT1VN101							
Course Title	PYTHON PR	OGRAMMING							
Type of Course	Vocational Mi	inor – Introduction to AI							
Semester	Ι								
Academic Level	100-199								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	3	2	75					
Pre-requisites	Basic Logic		•						
Course	Course aims to provide basic programming skills in Python and Python								
Summary	libraries like N	umPy etc.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools
CO1	Explain the basics of Python	U	С	Internal
	Data structures and			Exam/Assignment/
	Programming constructs			Seminar/ Viva / End
				Sem Exam
CO2	Explain the basics of Python	U	Р	Internal
	Programming constructs			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO3	Apply Python Libraries for Data	Ар	Р	Internal
	Science and Machine Learning			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
* - Rei	member (R), Understand (U), Ap	ply (Ap), Ana	lyse (An), E	valuate (E), Create (C)
# - F	actual Knowledge(F) Conceptua	al Knowledge	e (C) Proce	dural Knowledge (P)
Metaco	gnitive Knowledge (M)			

Module	Unit	Content	Hrs (45+	Ext. Marks
			30)	(70)
		Module I		
1	1	Introduction to Python: - using the Python interpreter, Overview of programming in Python		
1	2	Expressions and Variables-String Operations.		
	3	Python Data Structures: lists & Tuple –Sets - Dictionaries	10	Min.15
	4	Programming Fundamentals: Conditions and Branching- Loops		
	5	Functions: formal arguments, variable-length arguments		
		Module II		
	6	Introduction to Classes and Objects: -classes, class attributes, instances, instance attributes		Nr. 15
Π	7	Binding and method invocation, inheritance, polymorphism,	12	
	8	Built-in functions for classes and instances.		Min.15
	9	Files and input/output, reading and writing files		
	10	Methods of file objects, using standard library functions		
	11	Exception Handling		
		Module III		
	12	Python libraries: Numpy- Scikit- Pandas.		
ш	13	Importing Datasets: Importing and Exporting Data in Python, Basic Insights from Datasets	10	34. 17
	14	Data cleansing and pre-processing: Identify and Handle Missing Values	12	Min.15
	15	Descriptive Statistics		
	16	ANOVA Correlation		

	17	Dealing with Outliers		
		Module IV		
IV	18	Overview of data visualization concepts		
	19	Introduction to Matplotlib and Seaborn	11	Min.15
	20	Basic Plotting and Customization with Matplotlib		
	21	Basic Plotting and Statistical Visualization with Seaborn		
	22	Other Visualization Libraries – Case Studies		
		Module V Any 6 from the list	30	
	1	a) Write a program to calculate compound interest when principal, rate and number of periods are given		
		b) Read name, address, email and phone number of a person through keyboard and print the details		
	2	Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)		
	3	a) Print the below triangle using for loop.		
		5		
		4 4		
		3 3 3		
		2 2 2 2 2		
		11111		
		b) Python Program to Print the Fibonacci sequence using while loop		
	4	Python program to print all prime numbers in a given interval (use break)		
	5	Write a function called GCD that takes parameters a and b and returns their greatest common divisor		

6	Write a function called palindrome that takes a string argument and returns True if it is a palindrome and False otherwise. Remember that you can use the built- in function len to check the length of a string			
7	Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw circle that draws circles on the canvas			
8	Write a python program that defines a matrix and prints			
9	Write a python program to perform addition of two square matrices			
10	Python program to perform read and write operations on a file.			
11	11 Use the structure of exception handling all general- purpose exceptions			
12	Write a Python program that calculates basic statistics measures using NumPy			
13	Create a CSV file named sales_data.csv, which contains sales data for a company. The file has the following columns: Date, Product, Units Sold, and Revenue. Write a Python program using Pandas to perform the following tasks: a) Read the data from the CSV file into a DataFrame.			
	b) Calculate the total revenue generated by each product.			
	c) Determine the total units sold for each product.			
	d) Find the date with the highest revenue.			
	e) Plot a bar chart showing the total revenue generated by each product.			

14	Create a CSV file named student_grades.csv, which contains the grades of students in different subjects. The file has the following columns: Student_ID, Maths, Science, English, and History. Write a Python program using Matplotlib to perform the following tasks: a) Read the data from the CSV file into a DataFrame. b) Calculate the average score for each subject. c) Plot a bar chart showing the average scores for each subject. d) Plot a histogram showing the distribution of scores in Maths.
15	 Visualizing Titanic Dataset You are given a dataset containing information about passengers on the Titanic, including their survival status, age, sex, class, and fare. Write a Python program using Seaborn to perform the following tasks: a) Load the Titanic dataset into a DataFrame.
	b) Plot a count plot to visualize the number of passengers in each class.c) Plot a bar plot to visualize the survival rate of passengers based on their class and sex.
References:	d) Plot a heatmap to visualize the correlation matrix of numerical features (e.g., age, fare, and survival status).

References:

- 1. Core Python Programming by Wesley J. Chun, 2nd Edition, Pearson Education.
- 2. An Introduction to Python by Guido Van Russom, Fred L.Drake, Network Theory Limited.
- 3. Python for Data Science, Dr. Mohd. Abdul Hameed, Wiley Publications 1st Ed. 2021
- 4. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 5. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython ,2nd edition, Wes McKinney, O'Reilly Media (2017)

Note: Proofs of all the results are exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	2	1	2
CO 2	2	1	3	1	3	3	2	1	2
CO 3	3	2	3	2	3	3	3	1	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathemat	BSc Mathematics Honours					
Course Code	MAT2VN101						
Course Title	LINEAR ALC	LINEAR ALGEBRA FOR MACHINE LEARNING					
Type of Course	Vocational M	Vocational Minor – Introduction to AI					
Semester	II	II					
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Foundations in	Mathematics	•				
Course Summary		Course aims to provide basics of linear algebra which is useful in understanding machine learning problems					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Solve system of linear	Ар	C	Internal Exam/Assignment/
	equations			Seminar/ Viva / End Sem Exam
CO2	Apply vector spaces and its	Ар	С	Internal Exam/Assignment/
	properties			Seminar/ Viva / End Sem Exam
CO3	Explain basics of matrix	U	С	Internal Exam/Assignment/
	algebra and its applications			Seminar/ Viva / End Sem Exam
* - Rem	ember (R), Understand (U),	Apply (Ap	o), Analyse	(An), Evaluate (E), Create (C) #
- Factual	Knowledge(F) Conceptual H	Knowledge	(C) Procedu	ural Knowledge (P) Metacognitive
Knowledg	ge (M)			

Textbook		Introduction to Linear Algebra'' by Gilbert Strang, Wellesley-Cambridge Press, 2016, ISBN: 978-0980232776				
Module	Unit	Content	Hrs (45+ 30)	Marks (70)		
Ι		Module I				
	1	Vectors and Linear Equation				
	2	The Idea of Elimination				
	3	Elimination Using Matrices	12	Min.15		
	4	Rules for Matrix Operations				
	5	Inverse Matrices				
	6	Elimination = Factorization: A = L U				
	7	Transposes and Permutations				
II		Module II				
	8	Spaces of Vectors				
	9	The Nullspace of A: Solving $Ax = 0$	12	Min.15		
	10	The Rank and the Row Reduced Form	12	IVIIII.15		
	11	The Complete Solution to $Ax = b$				
	12	Independence, Basis and Dimension				
	13	Dimensions of the Four Subspaces				
III		Module III				
	14	Orthogonality of the Four Subspaces	8	Min.15		
	15	Projections				
	16	Least Squares Approximations				
	17	Orthogonal Bases and Gram-Schmidt				
IV		Module IV				
	18	Introduction to Eigenvalues				
	19	Diagonalizing a Matrix	13	Min.15		
	20	Symmetric Matrices				

21	Positive Definite Matrices	
22	Similar Matrices	
23	Singular Value Decomposition (SVD)	
	Module V Practical using Python(Any 6 from the list)	30
1	Write Python function for vector operations: addition, scalar multiplication, norm,	
2	Write Python function for matrix operations: addition, multiplication, inverse, transpose	
3	Implement a Python function to solve a system of linear equations using NumPy's linear algebra module.	
4	Implement matrix factorization techniques such as LU decomposition in Python using NumPy	
5	Write a Python function to check if a set of vectors forms a vector space. And to determine if a set of vectors forms a subspace of a given vector space.	
6	Write a Python function to find the basis of the column space, null space of a matrix, to calculate the rank, dimension of a matrix using NumPy,	
7	Write a function to determine if a set of vectors is linearly independent, to find the span of a set of vectors. and to check if a set of vectors forms a basis for a given vector space.	
8	Create a function to determine if two given vectors are orthogonal to each other and to calculate the projection of one vector onto another vector.	
9	Use orthogonalization to find the least squares approximation of a vector that does not lie in the span of a given set of vectors.	
10	Implement the Gram-Schmidt process in Python to orthogonalize a given set of vectors and to orthogonalize columns of a given matrix	
11	Implement a function to perform a change of basis operation on a given vector.	

12	Write a Python script to verify the rank-nullity theorem by computing the rank and nullity of a matrix and	
	comparing with the dimensions of its domain and codomain.	
13	Write a Python function to compute the eigenvalues and eigenvectors of a square matrix using SciPy.	
14	Write a Python function to check if a given square matrix is diagonalizable, to diagonalize a matrix using its eigenvectors and eigenvalues.	
15	Write a Python function to compute the singular value decomposition of a matrix using NumPy, Use Singular Value Decomposition (SVD) to find the rank and dimension of a matrix, and discuss how it can be used for dimensionality reduction.	
	Reference	
1	"Linear Algebra and Its Applications" by David C. Lay, Steven R. Lay, and Judi J. McDonald, Pearson, 2020,ISBN: 978-0134860244	
2	Linear Algebra: Concepts and Applications" by Charles R. Johnson and Dean E. Riess, Wiley, 2017,ISBN: 978- 1118612596	
3	Linear Algebra: A Modern Introduction" by David Poole, Cengage Learning, 2016, ISBN: 978- 1305658004	
4	Linear Algebra for Machine Learning" by Jason Brownlee, Machine Learning Mastery, 2021	
5	Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib" by Robert Johansson, Apress, 2018, ISBN: 978-1484242452	

Note: Proofs of all the results are exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	2	2	3	1	1
CO 2	3	2	3	1	2	2	3	1	1
CO 3	3	3	3	1	2	2	3	1	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	~	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathematics Honours						
Course Code	MAT3VN201						
Course Title	INTRODUCT	TION TO MACHINE LEA	RNING				
Type of Course	Vocational Mi	inor – Introduction to AI					
Semester	III						
Academic Level	200-299						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Minor 1, Minor 2 (Code)						
Course	Course aims to provide basic concepts of machine learning including						
Summary	paradigms of s	paradigms of supervised, unsupervised and reinforcement learning.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used					
		Level*	Category#						
CO1	Explain Machine Learning	U	С	Internal Exam/Assignment/					
	concepts and basic			Seminar/ Viva / End Sem					
	parameter Estimation			Exam					
	methods.								
CO2	Distinguish between	U	С	Internal Exam/Assignment/					
	Supervised, Unsupervised			Seminar/ Viva / End Sem					
	and semi supervised			Exam					
	learning and evaluate the								
	performance measures								
CO3	Apply the algorithms	Ар	Р	Internal Exam/Assignment/					
	identifying problem			Seminar/ Viva / End Sem					
	situations			Exam					
* - Rer	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)									
Metaco	Metacognitive Knowledge (M)								

Module	Unit	Content		Ext.
			(45	Marks
			+30)	(70)
		Module I	,	
	1	Introduction: Machine Learning - Machine Learning Foundations		
I	2	Machine Learning Paradigms- Supervised, Unsupervised, Reinforcement	10	Min.15
	3	Applications of Machine Learning, Case studies		
	4	Basics of parameter estimation - maximum likelihood estimation (MLE) and maximum a posteriori Estimation (MAP).		
	5	Introduction to Bayesian formulation.		
		Module II		
	6	Regression – Simple Linear regression and Multiple Linear Regression		
	7	Gradient Descent algorithm and Matrix method, Overfitting in regression.		
II	8	Methods for Classification- Logistic regression, Naive Bayes, Decision tree algorithm- ID3	14	Min.15
	9	9 SVM - Introduction, Maximum Margin Classification, Mathematics behind Maximum Margin Classification		
	10	Maximum Margin linear separators, soft margin SVM classifier, non-linear SVM		
	11	Kernels for learning non-linear functions, polynomial kernel, Radial Basis Function (RBF)		
		Module III		
	12	Regression Evaluation Metrics – Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared (Coefficient of Determination)		

Ш	13	Classification Evaluation Metrics - Precision, Recall, Accuracy, F-Measure, Receiver Operating Characteristic Curve (ROC), Area Under Curve (AUC)	11	Min.15
	14	Bootstrapping, Cross Validation, Ensemble methods, Bias-Variance decomposition.		
	15	Clustering - Similarity measures, Hierarchical Agglomerative Clustering, K-means partitional clustering		
	16	Expectation maximization (EM) for soft clustering		
	17	Dimensionality reduction –Principal Component Analysis, t-Distributed Stochastic Neighbour Embedding (t-SNE)		
		Module IV		
	18	Introduction to Reinforcement Learning, Learning Task		
IV	19	Learning Models for Reinforcement – (Markov Decision process, Q Learning - Q Learning function, Q Learning Algorithm), Application of Reinforcement Learning		
	20	Introduction to Neural Network, Perceptron, Multilayer feed forward network,	10	Min.15
	21	Activation functions (Sigmoid, ReLU, Tanh), Back - propagation algorithm.		
	22	Case Study: Applying Reinforcement Learning in Autonomous Vehicle Navigation Case Study: Predicting Customer Churn in Telecommunications Industry using Neural Networks		
		Module V Practical (Any 6 from the list)	30	
	1	Create a dataset containing measurements of the heights of students in a class. Estimate the parameters of a normal distribution that best describes the distribution of heights using Maximum Likelihood Estimation (MLE)		

2	The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result	
3	Implement Simple Linear regression using python	
4	Implement Multiple Linear regression using python	
5	Implement the Logistic regression algorithm	
6	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets	
7	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	
8	Create a dataset containing information about the prices of houses in a certain city. The dataset includes various features such as the size of the house, number of bedrooms, location, and age of the house, as well as the corresponding sale prices. Your task is to build a regression model to predict the sale price of houses based on their features and evaluate the model's performance using appropriate evaluation metrics (MAE, MSE, RMSE, R-squared)	
9	Implement the support vector machine algorithm	
10	Create a dataset containing information about customers of a telecommunications company. The dataset includes features such as customer demographics, service usage, and contract details, as well as a binary target variable indicating whether each customer churned (1) or not (0). Your task is to build a classification model to predict customer churn based on the available features. Evaluate the trained model's performance on the testing data using the following evaluation metrics: Accuracy, Precision, Recall, F1- score and ROC Curve. Use SVM Classification	
11	Program to implement K-Means clustering Algorithm	

	12	Create dataset containing information about customers of a retail store, including features such as age, income, and spending score. Your task is to perform clustering on the dataset to identify distinct groups of customers based on their purchasing behaviour. Use K-means Algorithm	
]	13	Implement Dimensionality reduction using Principal Component Analysis (PCA) method	
]	14	Implementing a simple reinforcement learning algorithm	
1	15	Create a dataset containing information about patients with diabetes, including features such as age, BMI, blood pressure, and glucose levels, as well as an indication of whether each patient has diabetes or not. Your task is to build a simple neural network classifier to predict whether a patient has diabetes based on their features	
		References	
	1.	M. Gopal, "Applied Machine Learning", McGraw Hill Education	
	2.	Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013	
	3.	Machine Learning: A Probabilistic Perspective by Kevin P. Murphy	
	4.	Ethem Alpaydin, Introduction to Machine Learning, 2nd edition, MIT Press 2010.	

Note: Proofs of all the results are exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	3	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathematics Honours				
Course Code	MAT8VN401				
Course Title	INTRODUCTION TO ARTIFICIAL INTELLIGENCE				
Type of Course	Vocational Minor – Introduction to AI				
Semester	VIII				
Academic Level	400-499				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4	3	2	75	
Pre-requisites	Python Programming, Foundation of Mathematics, Machine Learning				
Course Summary	This course on "Introduction to Artificial Intelligence" offers a thorough exploration of AI fundamentals and techniques. Covering topics like representation, search algorithms, and intelligent agents, students' progress to advanced concepts including knowledge representation, neural networks, and practical implementations. With hands-on sessions focusing on algorithm implementation and machine learning models, students gain both theoretical understanding and practical skills essential for AI development.				

Course Outcome

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Explain foundation principles, mathematical tools and program paradigms of AI and Apply problem solving through search for AI applications	U	С	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment		
	Explain formal methods of knowledge representation and Apply logic and reasoning techniques to AI applications	U	Р	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment		
	Apply intelligent agents for Artificial Intelligence programming techniques	Ар	Р	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - F Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowled						

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Module I		
	1	Introduction to AI, History and Evolution of AI, Applications		
	2	Introduction to representation and search		
Ι	3	The Propositional calculus, Predicate Calculus, Calculus expressions and Applications	10	Min.15
	4	State Space Search, Production Systems, Problem Characteristics, types of production systems, Graph theory		
	5	Intelligent Agents: Agents and Environments, The nature of environments, The structure of agents. concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation		
		Module II		
	6	Uninformed Search Strategies - Breadth First Search, Depth First Search, Depth Limited Search, Iterative Deepening Depth First Search		
	7	Bidirectional Search, Comparison of Uninformed search Strategies, Searching with partial information		
II	8	Sensor-less problems, Contingency problems		
	9	Informed Search Strategies - Generate& test, Hill Climbing, Best First Search	14	Min.15
	10	A* and AO* Algorithm, Constraint satisfaction, Backtracking Search		
	11	Game playing: Minimax Search, Alpha-Beta Cutoffs		
	12	Optimal Decisions in Games, Stochastic Games		
		Module III		
	13	Knowledge Representation -Knowledge based agents, Wumpus world		
III	14	Knowledge Representation -issues, The frame problem.		
	15	First order Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining	13	Min.15

	16	Propositional Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining		
	17	Agent based and distributed problem solving		
	18	Introduction to Expert System Technology, Bayes Rule,Bayesian Network, Hidden Markov Model, Decision Network		
IV		Module IV		
	19	Introduction ANN, biological neuron, Artificial neuron		
	20	Perceptron Learning	0	15 15
	21	Back Propagation algorithm	8	Min.15
	22	Introduction to Natural Language Processing, Pattern recognition Case study - Enhancing Customer Service with AI- Powered Chatbots		
		Module V	30	
	1	Practical (Any 6 from the list)		
	1	Write a program to implement depth first search algorithm.		
	2	Write a program to implement breadth first search algorithm.		
	3	Write a program to simulate 4-Queen / N-Queen problem.		
	4	Write a program to solve tower of Hanoi problem.		
	5	Write a program to implement alpha beta search.		
	6	Write a program for Hill climbing problem.		
	7	Write a program to implement A*algorithm		
	8	Write a program to implement AO*algorithm		
	9	Design the simulation of tic-tac-toe game using min-max algorithm		
	10	Write a program to shuffle Deck of cards		
	11	Write a program to derive the predicate.		

1			
	12	Solve constraint satisfaction problem	
		(a) Derive the expressions based on Associative law	
		(b)Derive the expressions based on Distributive law.	
	13	Develop a simple text-based game using Python that simulates a classic "Guess the Number" game. The game should generate a random number between 1 and 100 and prompt the player to guess the number. After each guess, the game should provide feedback to the player (e.g., "Too high", "Too low", or "Correct!") and keep track of the number of attempts it takes for the player to guess the correct number. Once the player guesses the correct number, the game should display the number of attempts and ask if the player wants to play again	
	14	Train a simple machine learning model, such as a linear regression or logistic regression classifier, using a dataset of your choice and evaluate its performance using appropriate metrics.	
	15	Implement a decision tree classifier from scratch and apply it to a classification task with a real-world dataset	
		References	
	1	S. Russel and p. Norvig, Artificial intelligence – A Modern Approach, 3rdEdn, Pearson	
	2	Artificial Intelligence: Elaine Rich, Kevin Knight, Mc- GrawHill	
	3	Artificial Intelligence by Luger (Pearson Education)	
	4	D W Patterson, introduction to Artificial Intelligence and Expert Systems, PHI, 1990	
	5	Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville:	

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathemat	BSc Mathematics Honours						
Course Code	MAT1VN102	MAT1VN102						
Course Title	STATISTICS	FOR DATA SCIENCE						
Type of Course	Vocational M	Vocational Minor – Introduction to Data Science						
Semester	Ι							
Academic Level	100-199	100-199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	Foundations in	mathematics	•	-				
Course Summary		Course aims to provide basic concepts such as central tendency, probability, sampling and testing						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain measures of central	U	С	Internal exam/ Assignment/
	tendency, dispersion,			Seminar/ External/
	regression			Practical Assessment
CO2	Distinguish between discrete	U	С	Internal exam/ Assignment/
	and continuous distributions			Seminar/ External/
	and its properties			Practical Assessment
CO3	Analyse data using testing	An	С	Internal exam/ Assignment/
	hypothesis			Seminar/ External/
				Practical Assessment
* - Ren	nember (R), Understand (U),	Apply (Ap)	, Analyse (A	n), Evaluate (E), Create (C)
# - Fa	actual Knowledge(F) Concep	otual Know	vledge (C)	Procedural Knowledge (P)
Metaco	gnitive Knowledge (M)			

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
Ι		Module I		
	1	Measures of central tendency: - mean, median, mode		
	2	Measures of dispersion: Range, Mean deviation, Quartile deviation and Standard deviation		
	3	Moments, Skewness and Kurtosis,	11	Min.15
	4	Correlation - Linear correlation		
	5	Karl Pearson's coefficient of Correlation, Rank correlation		
	6	Linear regression- Simple and Multiple		
II		Module II		
	7	Sample space, Events, Different approaches to probability	7	Min.15
	8 Addition and multiplication theorems on probability			WIII.13
	9	Independent events, Conditional probability		
	10	Bayes Theorem		
III		Module III		
	11	Random variables, Probability density functions and distribution functions		
	12	Marginal density functions, Joint density functions		
	12	Mathematical expectations	12	Min.15
	14	Moments and moment generating functions		
	15	Discrete probability distributions – Binomial, Poisson distribution		
	16	Continuous probability distributions- uniform distribution and normal distribution.		
IV		Module IV		
	17	Theory of Sampling: - Population and sample, Types of sampling Theory of Estimation: - Introduction, point estimation		

	18	methods of point estimation-Maximum Likelihood estimation and method of moments, Central Limit Theorem(Statement only)		
	19	Null and alternative hypothesis, types of errors, level of significance, critical region		
	20	Large sample tests – Testing of hypothesis concerning mean of a population and equality of means of two populations	15	Min.15
	21	Small sample tests – t Test for single mean, difference of means. Paired t-test		
	22	Chi-square test (Concept of test statistic ns2/ σ 2), F test - test for equality of two population variances		
	23	ANOVA – one-way & two-way classification		
		Module V	30	
		 Calculate the mean, median, and mode of a dataset. Calculate the range of a dataset. Calculate the mean deviation of a dataset. Calculate the quartile deviation of a dataset. Calculate the standard deviation of a dataset. Calculate the standard deviation of a dataset. Calculate skewness and kurtosis of a dataset. Compute the Karl Pearson's coefficient of correla two variables. Calculate rank correlation (e.g., Spearman's rank between two variables. Perform simple linear regression analysis. Perform multiple linear regression analysis. Calculate probabilities of events using different a classical, relative frequency, subjective). Apply addition and multiplication theorems of prosolve problems. Calculate conditional probabilities and use Bayes Generate random samples from various probabili (e.g., binomial, Poisson, normal) and calculate rel Conduct hypothesis testing using Excel functions sample tests (e.g., z-test, t-test), small sample test single mean, paired t-test), chi-square test, F-test, 	correlati pproach obability ' Theore ty distri levant st s for larg	es (e.g., y to em. butions atistics. ge -test for
		References		
	1	Fundamentals of statistics: S. C. Gupta, 6th Revised and enlarged edition April 2004, Himalaya Publications		
I I				

2	Fundamentals of Mathematical Statistics- S. C. Gupta, V. K. Kapoor. Sultan Chand Publications	
3	Introduction to Mathematical Statistics - Robert V. Hogg & Allen T. Craig. Pearson education	
3	Probability and Statistics for Engineering and the Sciences, Jay L. Devore, Cengage Learning, January 2022, ISBN for the 10th Edition: 978-1305251809	

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	3	1	2
CO 2	2	1	3	1	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	2	3

Correlation Levels:

Level	Correlation					
-	Nil					
1	Slightly / Low					
2	Moderate / Medium					
3	Substantial / High					

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	√

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	BSc Mathematic	BSc Mathematics Honours				
Course Code	MAT2VN102					
Course Title	R PROGRAM	MING				
Type of Course	Vocational Mir	or – Introduction to Da	ata Science			
Semester	II					
Academic Level	100-199					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4 3 2 75					
Pre-requisites	Foundations in Mathematics, Programming Fundamentals					
Course Summary	Course aims to writing	provide R programming	g fundamentals	s and algorithm		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Explain the basic	U	P	Internal exam/ Assignment/			
	programming structure of			Seminar/ External/ Practical			
	R, visualization of models			Assessment			
	and their inference.						
CO2	Apply statistical functions,	Ар	Р	Internal exam/ Assignment/			
	models and their Inferences			Seminar/ External/ Practical			
				Assessment			
CO3	Design data model,	С	Р	Internal exam/ Assignment/			
	visualization and inference			Seminar/ External/ Practical			
	of dataset to gain insights			Assessment			
* - Rer	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)						
Metaco	gnitive Knowledge (M)						

Module	Unit	Content	Hrs	Ext.	
			(45	Marks	
			+30)	(70)	
		Module I			
I	1	Introduction to R: R Studio, Basic components in R Studio.			
	2	Basic R syntax: variables, data types, operators	- 10	Min.10	
	3	Working with Data structures Vectors, List, Matrices & Arrays, Factors and Data frame		191111.10	
	4 Control structures (if-else statements, Loops) & Functions				
	5	Measures of Central Tendency & Dispersion			
		Module II			
	6	Importing and exporting data in R (CSV, Excel, Xml, Json, databases)			
7		Data Cleaning: Exploring raw data, Missing values, Zeros and NAs – Separating, Uniting Columns, String Manipulation, Filling Missing values			
II	8	Data manipulation with dplyr: filtering, selecting, mutating, summarizing	13	Min.20	
9 Basic Charts: Pie, Bar, Histogram, Scatterplot		Basic Charts: Pie, Bar, Histogram, Boxplot and Scatterplot			
	10 Data visualization with ggplot2: creating plots (scatter plots, bar plots, line plots)				
	11				
		Module III	_		
	12	Overview of statistical analysis in R			
ш	13 Descriptive statistics: mean, median, standard deviation, variance			Min.15	
	14	Probability distributions and random variables	9	101111.13	
	15	Hypothesis testing: t-tests, chi-square tests, ANOVA	1		
	16	Linear regression analysis: simple and multiple regression	-		

	17	Introduction to statistical modelling with R				
IV		Module IV				
	18	Introduction to machine learning concepts and algorithms				
	19	19 Supervised learning techniques: classification and regression		Min.15		
	20	20 Unsupervised learning techniques: clustering and dimensionality reduction				
	21	21 Case study – Explore Diamond dataset for prize prediction				
	22	Applied Analytics – HR, Finance & Marketing, Case studies				
		Module V Practical's (Any 6 from the list)	30			
	1 Write a R program to take input from user (name, age, occupatio and display the values with datatypes. Also print version of R ins			• •		
	2	Write a R program to calculate the sum of numbers from 1 to 10.				
	 Write a R Program to create a list containing a vector, a rand write a code for the following. 1) Give names to the elements in the list 2) Add element at the end of the list 3) Remove the second element 					

	1
4	R program to create a data frame of student with four given vectors and write a code
	1) to get the structure of a given data frame.
	2) to get the statistical summary and nature of the data of a given data frame.
	3) to extract specific column from a data frame using column name.
	4) to extract first two rows from a given data frame.
	5) to extract 3rd and 5th rows with 1st and 3rd columns from a given data frame.
	6) to add a new column in a given data frame.
	7) to add new row(s) to an existing data frame.
	8) to drop column(s) by name from a given data frame.
	9) to drop row(s) by number from a given data frame.
	a) 10) to extract the records whose grade is greater than 9
5	Write a R program to find biggest of 3 number (if -else)
6	Write a R program to find sum of elements of vector and to find minimum and maximum elements of vector (loop)
7	Write a R program to Import a CSV file named 'data.csv' into a data frame named 'data_df'.
	a) Display the structure of the 'data_df' data frame using the 'str()' function.
	b) Print the first few rows of the data frame to inspect the data using the 'head()' function.
	c) Calculate summary statistics (mean, median, min, max) for numerical variables in the data frame using the 'summary()' function.

8	 Write a Program in R for Missing value imputation Load the 'iris' dataset into a data frame named 'iris_df'. Introduce missing values into the 'iris_df' dataset by randomly replacing a certain percentage of values with NA. Display the summary of missing values in the dataset using the 'is.na()' and 'colSums()' functions. Impute missing values in the dataset using a simple technique (e.g., replacing missing values with the mean or median of the corresponding column). Verify that there are no missing values remaining in the dataset after imputation. Compare summary statistics (mean, median, min, max) of the dataset before and after missing value imputation.
9	Import a dataset from a CSV file and use dplyr to filter rows based on a condition.
10	Write a R Program to print data in different graph formats (Histogram, Pie, Bar, Boxplot, Scatterplot)
11	 Write a R program to visualize different plot using ggplot Load the 'iris' dataset into a data frame named 'iris_df'. Create a scatter plot of 'Sepal.Length' against 'Sepal.Width' with points colored by 'Species'. Generate a box plot of 'Petal.Length' for each 'Species'. Create a histogram of 'Sepal.Length' with customized bin widths and colors. Generate a density plot of 'Petal.Width' for each 'Species' overlaid on the same plot. Create a bar plot showing the count of each 'Species' in the dataset. Generate a violin plot of 'Petal.Length' for each 'Species' with custom fill colors. Create a line plot showing the trend of 'Sepal.Length' over 'Petal.Length' for each 'Species'. Combine multiple plots into a single visualization using facets based on 'Species'. Customize the appearance of the plots by adding titles, axis labels, legends, and adjusting plot aesthetics (e.g., colors, transparency).
12	Write a Program to find mean, median, standard deviation and variance

13	The heights of 6 randomly chosen sailors are 63,65,68,69,71,72 inches. Those of 10 randomly chosen soldiers are 61,62,65,66,69,69,70,71,72,73 inches. Discuss whether this data gives a suggestion that the sailors are taller than soldiers. Aim: To test the claim that sailors are taller than soldiers (t-test)					
14	Write a R Program to Apply Simple Linear Regression and Multiple Linear Regression					
15	Write a R Program to Apply K-means clustering algorithm to the data and visualize the clusters.					
	References					
1	Hands-On Programming with R by Garrett Grolemund					
2	R Cookbook by Winston Chang, Paul Teetor, and Joseph Adler					
3	Beginning R: The Statistical Programming Language by Mark Gardener					
4	The Art of R Programming by Norman Matloff					
5	Advanced R by Hadley Wickham					

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	2	3	3	3	2	2
CO 2	3	3	3	2	3	3	3	2	2
CO 3	3	3	3	2	3	3	3	2	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	✓

Programme	BSc Mathema	BSc Mathematics Honours				
Course Code	MAT3VN202	2				
Course Title	DATA MIN	ING				
Type of Course	Vocational N	/linor – Introduction to Da	ata Science			
Semester	III					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	3	2	75		
Pre-requisites	Basic Knowledge in MS Excel					
Course Summary	Course aims	to provide basic data mining	g techniques usi	ng Weka tool		

Course Outcome:

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Explain the fundamental	U	С	Internal exam/ Assignment/		
	concepts and principles of			Seminar/ External/ Practical		
	data mining			Assessment		
CO2	Explain the mining	U	Р	Internal exam/ Assignment/		
	techniques like association,			Seminar/ External/ Practical		
	classifications and			Assessment		
	clustering on datasets					
CO3	Apply data mining	Ap	Р	Internal exam/ Assignment/		
	techniques to real-world			Seminar/ External/ Practical		
	datasets			Assessment		
* - Rer	nember (R), Understand (U),	Apply (Ap), Analyse (A	An), Evaluate (E), Create (C)		
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)					
Metaco	gnitive Knowledge (M)					

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Module I		
	1	Data Warehousing - Data warehousing architecture, Warehouse Schema, Data warehouse backend process, Multidimensional Data Model		
	2	OLAP Operations, Introduction to KDD process, Data mining	8	Min 15
Ι	3	Data mining Functionalities, Classification of Data Mining Systems.		
	4	Data Warehousing Case Study: Government, Tourism and Industry		
	5	Data Preprocessing - Data Cleaning, Data Integration and Transformation, Data Reduction, Data discretization		
		Module II		
	6	Association Analysis - Basic Concepts, Frequent Item set Mining Methods: Apriori Algorithm, generating association Rules from Frequent Item sets, Improving the Efficiency of Apriori.	7	Min 15
П	7	Evaluation of Association Patterns, Visualization, Partition algorithm		
		A Case Study on Association using Orange Tool		
	8	Dynamic Item set Counting algorithm- FP-tree growth algorithm-Incremental Algorithm-Border algorithm		
		Module III		
	9	Classification Technique: Introduction, Decision Trees: Tree Construction Principle – Attribute Selection measure – Tree Pruning - Decision Tree construction Algorithm – CART – ID3		
III	10	Bayesian Classification: Bayes' theorem, Naïve Bayesian Classification	14	Min 15
	11	K- Nearest Neighbour Classifiers, Support Vector Machine. Evaluating the performance of a Classifier, Methods for comparing classifiers, Visualization		
	12	Case Study of Classification using Orange Tool		

	13	Linear Regression, Nonlinear Regression, Other Regression-Based Methods		
		Module IV		
	14	Clustering techniques: Data Attribute Types – Data Similarity and Dissimilarity		
	15	Partitioning Methods: k-Means and k- Medoids, CLARANS		
	16	Hierarchical Method: Agglomerative and Divisive Hierarchical Clustering		
	17	Density-based Clustering - DBSCAN, Grid based clustering-STING		
IV	18	Evaluation of Clustering Method	16	Min 15
	19	Case Study of Clustering using Orange Tool		
	20	Introduction to Web Mining - Basic concepts, Web content mining, Web structure mining, Web usage mining		
	21	Introduction to Text mining, Text Preprocessing, Text clustering		
	22	Case Study – Web Mining: Analysing User Behaviour on E-commerce Website Case Study - Sentiment Analysis of Customer Reviews		
		Module V		
	1	Practicals (Any 6 from the list) Installation of WEKA Tool		
	2	Creating new Arff File		
	3	Pre-Processes Techniques on Data Set		
	4	Pre-process a given dataset based on Handling Missing Values		
	5	Generate Association Rules using the Apriori Algorithm		
	6	Generating association rules using FP growth algorithm	30	
	7	Build a Decision Tree by using ID3 algorithm		
	8	Build a Naïve Bayesian Classifier		
	9	Build a K- Nearest Neighbour Classifiers		
	10	Build a Support Vector Machine		

11	Build a Linear Regression	
12	Build K-Means Algorithm	
13	Build K-Medoids Algorithm	
14	Build Hierarchical Clustering Algorithms	
15	Create Student. ariff file to suggest better college using Decision tree	
	References	
1	Arun K Pujari, "Data Mining Techniques", Universities Press. 2012	
2	Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 'Introduction to Data Mining'	
3	G. K. Gupta, "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.	
4	Data Mining: Practical Machine Learning Tools and Techniques" by Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal:	
5	Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei:	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	3	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathemati	BSc Mathematics Honours				
Course Code	MAT8VN402					
Course Title	DATA VISUA	LIZATION				
Type of Course	Vocational Mi	nor – Introduction to Da	ata Science			
Semester	VIII					
Academic Level	400-499					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	3	2	75		
Pre-requisites	Minor 1 and minor 2					
Course	Course aims to provide data visualization techniques using R					
Summary	programming an	nd interactive chart build	ing			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Explain the methods for	U	С	Internal exam/ Assignment/			
	visualizing data			Seminar/ External/ Practical			
				Assessment			
CO2	Apply Visualization	Ар	Р	Internal exam/ Assignment/			
	methods for different data			Seminar/ External/ Practical			
	domains			Assessment			
CO3	Design an Interactive data	С	С	Internal exam/ Assignment/			
	visualization story board for			Seminar/ External/ Practical			
	data			Assessment			
* - Rei	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - F	actual Knowledge(F) Conce	eptual Kno	wledge (C)	Procedural Knowledge (P)			

Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Module I	8	Min.10
	1	Definition, Methodology, Data Visualization and Theory, Visualization Design objectives		
	2	Key Factors – Purpose, visualization function and tone, visualization design options – Data representation, Data Presentation		
I	3	Seven stages of data visualization, widgets, and introduction to different data visualization tools		
	4	Computational Statistics and Data Visualization, Presentation and Exploratory Graphics		
	5	Graphics and Computing, Statistical Historiography		
		Module II	13	Min.15
	6	Mapping, Time series, Connections and correlations - Scatter plot maps		
	7	Hierarchies and Recursion – introduction to Networks and Graphs, Info graphics		
Π	8	Complete Plots, Customization of plots -Parameters, Arranging Plots, Annotation,		
	9	Extensibility-Building Blocks, Combining Graphical Elements, 3-D Plots, Data Handling		
	10	Data and Graphs, Graph Layout Techniques, Graph Drawing		
	11	Bipartite Graphs, Hierarchical Trees, Spanning Trees, Networks, Directed Graphs, Tree maps		
		Module III	12	Min.20
	12	Environment setup - R and RStudio, Basic plotting functions in R		
ш	13	Creating scatter plots, histograms, pie chat, bar charts, Boxplot, violin plot, line chart, heatmap, Customizing plot appearance,		
	14	Introduction to ggplot2, Grammar of graphics, creating static plots with ggplot2, Customizing plots with themes and scales		

	15	Introduction to plotly for interactive plotting, Creating interactive scatter plots, line plots, and bar charts,		
		Adding interactivity with tooltips, zooming, and brushing		
	16	Designing interactive dashboards with Shiny and plotly, Other Visualization Pacakges		
IV		Module IV	12	Min.15
	17	Environment Setup, Design flow, Data Types, File Types		
	18	Data Source - Custom Data View, Extracting Data, Field operations, Metadata, Data Joining and Blending		
	19	Worksheets- Adding, renaming, reordering Worksheet, Workbook Calculations		
	20	Sort and Filters- Sorting, Quick filtering, Context filtering, Condition filtering, Filter operations		
	21	Tableau Charts — Bar Chart, Line Chart, Multiple Measure Line Chart, Pie Chart		
	22	Scatter Plot, Bubble Chart, Bullet Graph, Box Plot, Dashboard – Formatting – Forecasting – Trend Lines		
		Module V Practical's using R (Any 6 from the list)	30	
	1	Exploring Data with Basic Plots		
		 Load a dataset (e.g., Iris dataset) into R. 		
		• Create scatter plots, histograms, and box plots to explore the distribution of variables.		
		• Label axes, add titles, and customize colors and styles		
	2	Visualizing Relationships		
		• Choose a dataset with multiple variables.		
		• Create scatter plots to visualize relationships between pairs of variables.		
		• Use color or shape to represent categorical variables.		
		• Analyze patterns and correlations in the data		

3	Time Series Visualization	
	• Load a time series dataset (e.g., stock prices, weather data) into R.	
	• Create line plots to visualize trends and fluctuations over time.	
	• Use different line styles or colors to represent multiple time series.	
	• Add labels, titles, and annotations to the plot	
4	Bar and Pie Charts:	
	• Load a dataset with categorical variables (e.g., survey responses, product categories).	
	• Create bar charts and pie charts to visualize the distribution of categories.	
	• Customize the appearance of the charts (e.g., colors, labels, legends).	
5	Heatmaps and Correlation Plots:	
	• Load a dataset with numerical variables (e.g., correlation matrix).	
	• Create heatmaps to visualize correlations between variables.	
	• Customize the color scheme and add annotations to the heatmap.	
	• Interpret the patterns of correlation in the data	
6	Box Plots and Violin Plots:	
	• Load a dataset with numerical and categorical variables (e.g., Iris dataset).	
	• Create box plots and violin plots to visualize the distribution of numerical variables across different categories.	
	• Compare the use of box plots and violin plots for data visualization	

7	Interactive Visualizations with ggplot2 and Shiny:	
	• Create interactive plots using ggplot2 and Shiny.	
	• Design a Shiny app with interactive controls (e.g., sliders, checkboxes) to explore different aspects of the data.	
8	Geospatial Visualization:	
	• Load a dataset with geographical information (e.g., map coordinates, regions).	
	• Create maps using packages like ggmap, leaflet, or tmap to visualize spatial data.	
	• Add layers, markers, and tooltips to the map to provide additional information	
9	Faceted Plots:	
	• Load a dataset with multiple groups or categories.	
	• Create faceted plots using ggplot2 to display subsets of the data in separate panels.	
	• Customize the appearance of each panel (e.g., axis limits, labels, titles	
10	Network Visualization:	
	• Load a dataset representing a network or graph (e.g., social network, co-authorship network).	
	• Create network visualizations using packages like igraph or networkD3.	
	• Customize the layout, node colors, and edge weights to convey information about the network structure.	
11	Word Clouds and Text Visualization:	
	• Load a dataset containing text data (e.g., tweets, reviews).	
	• Create word clouds to visualize word frequency and importance.	
	• Customize the appearance of the word cloud (e.g., colors, fonts, word sizes).	

12 Dashboards with Plotty and Shiny: Design an interactive dashboard using Plotty and Shiny. Incorporate interactive plots, tables, and controls to explore and analyze data dynamically. 13 Dynamic Visualizations Load a dataset with time-varying data (e.g., stock prices, sensor readings). Create animated plots using package plotly. Create animated plots using package plotly. Customize the animation settings (e.g., frame rate, transition effects) to enhance data visualization. 14 Visualizing Hierarchical Data Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories). Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. Customize the appearance of the plots to highlight different levels of hierarchy. 15 Dashboard Design Stabboard Design Design a dashboard layout with multiple visualizations and interactive components. Arrange the visualizations in a coherent and informative manner. Add text annotations, titles, and summaries to provide context and insights. 2 2 2 2 2 3 4 <l< th=""><th>10</th><th></th><th></th></l<>	10		
Shiny. . Incorporate interactive plots, tables, and controls to explore and analyze data dynamically. 13 Dynamic Visualizations . Load a dataset with time-varying data (e.g., stock prices, sensor readings). . Create animated plots using package plotly. . Customize the animation settings (e.g., frame rate, transition effects) to enhance data visualization. . Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories). . Create ree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. . Customize the appearance of the plots to highlight different levels of hierarchy. 15 Dashboard Design . Design a dashboard layout with multiple visualizations and interactive components. . Arrange the visualizations in a coherent and informative manner. . Add text annotations, titles, and summaries to provide context and insights. 1 Ben Fry, "Visualizing Data", O'Rcilly Media, Inc., 2007. . 2 Scott Murray, "Interactive data visualization for the web", O'Reilly Media, Inc., 2nd edition, 2017 . 3 Fundamentals of Data Visualization" by Claus O. Wilke . 4 Data Visualization: A Practical Introduction" by Kieran Healy .	12	Dashboards with Plotly and Shiny:	
13 Dynamic Visualizations 13 Dynamic Visualizations · Load a dataset with time-varying data (e.g., stock prices, sensor readings). · Create animated plots using package plotly. · Customize the animation settings (e.g., frame rate, transition effects) to enhance data visualization. · 14 Visualizing Hierarchical Data · · Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories). · · Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. · · Customize the appearance of the plots to highlight different levels of hierarchy. · 15 Dashboard Design · · Design a dashboard layout with multiple visualizations and interactive components. · · Arrange the visualizations in a coherent and informative manner. · · Add text annotations, titles, and summaries to provide context and insights. · 1 Ben Fry, "Visualizing Data", O'Reilly Media, Inc., 2007. · 2 Scott Murray, "Interactive data visualization for the web", O'Reilly Media, Inc., 2nd edition, 2017 · 3 Fundamentals of Data Visualization "by Claus O. Wilke · 4 Data Visualization: A Practical Introduction" by Kieran Healy ·			
• Load a dataset with time-varying data (e.g., stock prices, sensor readings). • Create animated plots using package plotly. • Customize the animation settings (e.g., frame rate, transition effects) to enhance data visualization. • 14 Visualizing Hierarchical Data • • Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories). • • Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. • • Customize the appearance of the plots to highlight different levels of hierarchy. • 15 Dashboard Design • • Add text annotations, titles, and summaries to provide context and insights. • • References • 1 Ben Fry, "Visualizing Data", O'Reilly Media, Inc., 2007. 2 Scott Murray, "Interactive data visualization for the web", O'Reilly Media, Inc., 2nd edition, 2017 3 Fundamentals of Data Visualization" by Claus O. Wilke 4 Data Visualization: A Practical Introduction" by Kieran Healy			
prices, sensor readings). • Create animated plots using package plotly. • Customize the animation settings (e.g., frame rate, transition effects) to enhance data visualization. 14 Visualizing Hierarchical Data • Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories). • Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. • Customize the appearance of the plots to highlight different levels of hierarchy. 15 Dashboard Design • Design a dashboard layout with multiple visualizations and interactive components. • Arrange the visualizations in a coherent and informative manner. • Add text annotations, titles, and summaries to provide context and insights. References 1 Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007. 2 Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2017 3 Fundamentals of Data Visualization" by Claus O. Wilke 4 Data Visualization: A Practical Introduction" by Kieran Healy	13	Dynamic Visualizations	
• Customize the animation settings (e.g., frame rate, transition effects) to enhance data visualization. 14 Visualizing Hierarchical Data • Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories). • Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. • Customize the appearance of the plots to highlight different levels of hierarchy. 15 Dashboard Design • Design a dashboard layout with multiple visualizations and interactive components. • Arrange the visualizations in a coherent and informative manner. • Add text annotations, titles, and summaries to provide context and insights. 11 Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007. 2 Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2007. 3 Fundamentals of Data Visualization" by Claus O. Wilke 4 Data Visualization: A Practical Introduction" by Kieran Healy			
rate, transition effects) to enhance data visualization. 14 Visualizing Hierarchical Data · Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories). · Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. · Customize the appearance of the plots to highlight different levels of hierarchy. 15 Dashboard Design · Design a dashboard layout with multiple visualizations and interactive components. · Arrange the visualizations in a coherent and informative manner. · Add text annotations, titles, and summaries to provide context and insights. 1 Ben Fry, "Visualizing Data", O'Reilly Media, Inc., 2007. 2 Scott Muray, "Interactive data visualization for the web", O'Reilly Media, Inc., 2nd edition, 2017 3 Fundamentals of Data Visualization" by Claus O. Wilke 4 Data Visualization: A Practical Introduction" by Kieran Healy		• Create animated plots using package plotly.	
 Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories). Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. Customize the appearance of the plots to highlight different levels of hierarchy. Dashboard Design Design a dashboard layout with multiple visualizations and interactive components. Arrange the visualizations in a coherent and informative manner. Add text annotations, titles, and summaries to provide context and insights. References Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007. Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2017 Fundamentals of Data Visualization" by Claus O. Wilke Data Visualization: A Practical Introduction" by Kieran Healy 		rate, transition effects) to enhance data	
structure (e.g., organizational hierarchy, file directories). • Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. • Customize the appearance of the plots to highlight different levels of hierarchy. 15 Dashboard Design • Design a dashboard layout with multiple visualizations and interactive components. • Arrange the visualizations in a coherent and informative manner. • Add text annotations, titles, and summaries to provide context and insights. Image: Second Murray, "Interactive data visualization for the web", O'Reilly Media, Inc., 2007. 2 Scott Murray, "Interactive data visualization for the web", O'Reilly Media, Inc., 2017 3 Fundamentals of Data Visualization" by Claus O. Wilke 4 Data Visualization: A Practical Introduction" by Kieran Healy	14	Visualizing Hierarchical Data	
to visualize hierarchical data structures. · Customize the appearance of the plots to highlight different levels of hierarchy. 15 Dashboard Design · Design a dashboard layout with multiple visualizations and interactive components. · Arrange the visualizations in a coherent and informative manner. · Add text annotations, titles, and summaries to provide context and insights. Image: Context and insights. Image: Context and insights. Image: Context and Image: Context a		structure (e.g., organizational hierarchy, file	
15 Dashboard Design • Design a dashboard layout with multiple visualizations and interactive components. • Arrange the visualizations in a coherent and informative manner. • Add text annotations, titles, and summaries to provide context and insights. 1 Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007. 2 Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2017 3 Fundamentals of Data Visualization" by Claus O. Wilke 4 Data Visualization: A Practical Introduction" by Kieran Healy		1 0 1	
 Design a dashboard layout with multiple visualizations and interactive components. Arrange the visualizations in a coherent and informative manner. Add text annotations, titles, and summaries to provide context and insights. References Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007. Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2017 Fundamentals of Data Visualization" by Claus O. Wilke Data Visualization: A Practical Introduction" by Kieran Healy 			
visualizations and interactive components. visualizations and interactive components. · Arrange the visualizations in a coherent and informative manner. · Add text annotations, titles, and summaries to provide context and insights. Image: the visualization of the provide context and insights. · References Image: the visualization of the web", O''Reilly Media, Inc., 2007. Image: the visualization of the web", O''Reilly Media, Inc., 2007. Image: the visualization of the web", O''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", O''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", O''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", O''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", O''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", 0''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", O''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", 0''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", O''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", 0''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", 0''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", 0''Reilly Media, Inc., 2nd edition of the web", 0''Reilly Media, Inc., 2nd edition, 2017 Image: the visualization of the web", 0''Reilly Media, Inc., 2nd edition, 2nd edition, 2	15	Dashboard Design	
informative manner.informative manner.· Add text annotations, titles, and summaries to provide context and insights		.	
provide context and insights.ReferencesIBen Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.2Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2nd edition, 20173Fundamentals of Data Visualization" by Claus O. Wilke4Data Visualization: A Practical Introduction" by Kieran Healy		6	
1Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.2Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2nd edition, 20173Fundamentals of Data Visualization" by Claus O. Wilke4Data Visualization: A Practical Introduction" by Kieran Healy			
2007. 2 Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2nd edition, 2017 3 Fundamentals of Data Visualization" by Claus O. Wilke 4 Data Visualization: A Practical Introduction" by Kieran Healy		References	
web", O"Reilly Media, Inc., 2nd edition, 2017 3 Fundamentals of Data Visualization" by Claus O. Wilke 4 Data Visualization: A Practical Introduction" by Kieran Healy	1		
4 Data Visualization: A Practical Introduction" by Kieran Healy	2		
Healy	3	Fundamentals of Data Visualization" by Claus O. Wilke	
5 Learning tableau by Joshua N. Milligan	4	•	
	5	Learning tableau by Joshua N. Milligan	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	~	✓
CO 3	✓	\checkmark	\checkmark	\checkmark	✓

MINOR COURSES

Programme	B. Sc. Mathem	atics Honours							
Course Code	MAT1MN101								
Course Title	CALCULUS								
Type of Course	Minor								
Semester	Ι								
Academic Level	100-199								
Course Details	Credit	Credit Lecture/Tutorial Practical Total Hours							
		per week	per week						
	4 4 - 60								
Pre-requisites	Basic Idea of Fu	nctions, Limits and Continui	ity						
Course Summary		vers fundamental concepts		0					
	U	e idea of tangent lines, rates	•						
	0	r application in describing		Ū.					
		ates of change. Basic rules							
		ent, and power rules, as wel							
	-	erivatives are discussed. It a							
		strema of functions, the me		•					
	-	ts, curve sketching, indefini		0					
	•	substitution, and the geome	1						
	0	l. These sections explore v		-					
		tions, determining areas un	der curves, and	l solving real-					
	world problems	8.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1 CO2	Demonstrate proficiency in finding derivatives using various differentiation techniques and apply them to describe motion, rates of change, and related rates problems. Analyse functions to determine extrema, concavity, and inflection points using the Mean Value Theorem, First and Second Derivative Tests,	Ap	C	Internal Exam/Assignme nt/ Seminar/ Viva / End Sem Exam Internal Exam/Assignme nt/ Seminar/ Viva / End Sem
CO3	leading to effective curve sketching. Apply integration techniques to compute areas between curves, volumes of solids of revolution, arc lengths, and surface areas, culminating in understanding the Fundamental Theorem of Calculus and its applications.	Ap	С	Exam Internal Exam/Assignme nt/ Seminar/ Viva / End Sem Exam
# - Fac	nember (R), Understand (U), Apply (Ap), tual Knowledge(F) Conceptual Knowledg ognitive Knowledge (M)	•		

Text Book		Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (978-0-534-46579-7.	2010) IS	BN-13:
Module	Unit	Hrs (48 +12)	Ext. Marks (70)	
		Module I		
	1	A Quick Review of Functions, Limits, and Continuity (This		
		unit is optional)		
	2	Section 2.1: The Derivative -		
		The Derivative, Using the Derivative to Describe the		
		Motion of the Maglev, Differentiation, Finding the		
		Derivative of a Function, Differentiability,		
		Differentiability and Continuity		
	3	Section 2.2: Basic Rules of Differentiation -		
I	4	Some Basic Rules	13	Min 15
	4	Section 2.3: The Product and Quotient Rules -	15	WIII 13
		The Product and Quotient Rules (Example 6 is optional),		
	5	Extending the Power Rule, Higher- Order Derivatives		
	3	Section 2.6: The Chain Rule – Composite Functions, The		
	6	Chain Rule, Applying The Chain Rule Section 2.7 : Implicit Differentiation – Implicit		
	0	Functions, Implicit Differentiation		
		Module II		
	7	Section 2.9: Differentials and Linear Approximations -		
	,	Increments, Differentials, Linear Approximations		
	8	Section 3.1: Extrema of Functions -		
	-	Absolute Extrema of Functions, Relative Extrema of		
		Functions, Finding the Extreme Values of a Continuous		
		Function on a Closed Interval		
	9	Section 3.2: The Mean Value Theorem -		
		Rolle's Theorem, Some Consequences of the Mean		
II		Value Theorem, Determining the Number of Zeros of a		Min 15
		Function.	15	
	10	Section 3.3: Increasing and Decreasing Functions and		
		the First Derivative Test -		
		Increasing and Decreasing Functions, Finding the		
		Relative Extrema of a Function		
	11	Section 3.4: Concavity and Inflection Points -		
		Concavity, Inflection Points(Example 6 is optional),		
		The Second Derivative Test, The roles of f' and f'' in		
		Determining the Shape of a Graph.		
III	10	Module III		
	12	Section 4.1: Indefinite Integrals- Antiderivatives, The		
		indefinite Integral, Basic Rules of Integration		

	12	Section 4.2: Integration by Substitution -How the		
	13	method of Substitution Works, The Technique of		
	1.7	Integration by Substitution.		
	15	Section 4.3: Area - An Intuitive Look, Sigma Notation,		
		Summation Formulas, Defining the Area of The Region		
		Under the Graph of a Function.		
	16	Section 4.4: The Definite Integral -Definition of the		
		Definite Integral (Examples 2,3, and 4 are optional),		
		Geometric Interpretation of the Definite Definition of		
		the Definite Integral (Examples 2,3, and 4 are optional),		
		Geometric Interpretation of the Definite Integral, The	0	N.C. 17
		Definite Integral and Displacement, Properties of the	9	Min 15
		Definite Integral. Module IV		
	19	Section 4.5: The Fundamental Theorem of Calculus -		
	19			
		The Mean Value Theorem for Definite Integrals, The Fundamental Theorem of Calculus - Part 1, Fundamental		
		· · · · · · · · · · · · · · · · · · ·		
		Theorem of Calculus - Part 2, Evaluating Definite		
IV		Integrals using Substitution, Definite Integrals of Odd and Even Functions	11	Min 15
	20	Section 5.1: Areas Between Curves -	11	
	20			
1 V		A Real- Life Interpretation, The Area Between Two Curves, Integrating with Respect to <i>y</i>		
	21			
	21	Section 5.2: Volumes: Disks, Washers, and Cross Sections -		
		Solids of Revolution, The Disk Method, The Method of		
		Cross Sections.		
	22	Section 5.4: Arc Length and Areas of Surfaces of		
		Revolution - Definition of Arc Length, Length of a		
		Smooth Curve, Surfaces of Revolution		
		Module V	12	
	1	Limits Involving Infinity; Asymptotes		
	2	Derivatives of Trigonometric Functions		
	3	The General Power Rule and using the Chain Rule		
	4	Volumes Using Cylindrical Shells		
V	5	Work, Moments and Centre of Mass		
	6	Taylor & Maclaurin's Series		
	7	Approximation by Taylor Series		
	8	Transcendental Functions		
	9	Improper Integrals		
	10	Numerical Integration		
Referen	ces:			

- 1. Calculus & Analytic Geometry, 9th Edition, George B. Thomas & Ross L. Finney, Pearson Publications.
- 2. Thomas' Calculus, 14th Edition, Maurice D. Weir, Christopher Heil, & Joel Hass, Pearson Publications.
- 3. Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis, Wiley India.

- 4. Advanced Engineering Mathematics, 10th Ed, Erwin Kreyszig, John Wiley & Sons.
- 5. Calculus, 4th Edition, Robert T Smith and Roland B Minton, McGraw-Hill Companies
- 6. Calculus, 9th Edition, Soo T Tan, Brooks/Cole Pub Co.
- 7. Calculus, Vol 1, Tom M. Apostol, John Wiley & Sons.
- 8. Michael Van Biezen Calculus Lectures: <u>https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG</u>

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	1
CO 2	2	1	3	1	3	1	3	1	2
CO 3	3	2	3	1	3	1	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT2MN101						
Course Title	DIFFERENTIAL EQUATIONS AND MATRIX THEORY						
Type of Course	Minor						
Semester	II						
Academic	100 - 199						
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Calculus						
Course		ers a range of topics. It star					
Summary	0.	d methods for solving differ	-	- U			
		ions, linear equations, exact	-	-			
		eients. Then it proceeds into	1	±			
	Ū.	near equations with constant		•			
		iding methods for their solu	-				
		definition, properties, and ap					
	-	ansforming derivatives are	1				
		ction to vector spaces, matri	•	Ū.			
	-	er series, and separable parti		-			
		prehensive foundation in a	dvanced calcul	us and its			
	applications to	engineering and physics.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools		
		Level*	Category#	used		
CO1	Solve basic ordinary differential equations using separation of variables, linear methods, and Laplace transforms.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO2	Apply concepts from linear algebra, including matrices, determinants, and eigenvalues, to solve systems of equations and analyse linear systems.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	Analyse periodic functions using Fourier series and solve separable partial differential equation	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) 					
	cognitive Knowledge (M)		-,			

	Text	Advanced Engineering Mathematics, 6 th Edition, Dennis G. Zi Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2	ll, Jones	S &
	Module	Content	Hrs (48 +12)	Ext. Marks (70)
		Module I		
Ι	1	Introduction to Differential Equations - Section 1.1: Definitions and Terminology - A Definition, Classification by Type, Notation, Classification by Order, Classification by Linearity, Solution (with examples)		
	2	Section 2.2: Separable Equations - Introduction, A Definition, Method of Solution (with examples)		
	3	Section 2.3: Linear Equations - Introduction, A Definition, Standard Form, Method of Solution, An Initial Value Problem (Examples 4 & 5, ref section 1.1)	13	Min 15
	4			
	5	Section 3.3: Homogeneous Linear Equations with Constant Coefficients - Introduction, Auxiliary Equation.		
	6	Section 3.6: Cauchy-Euler Equations - Cauchy-Euler Equation (Second Order Only), Method of Solution.		
		Module II		
Π	7 8	Section 4.1: Definition of the Laplace Transform - Basic Definition (Definition 4.1.1 onwards) Section 4.1: Definition of the Laplace Transform - <i>L</i> is a Linear Transform.		
	9	Section 4.2: The Inverse Transform and Transforms of Derivatives - Inverse Transforms		
	10	Section 4.2: The Inverse Transform and Transforms of Derivatives - Transforms of Derivatives	13	Min 15
	11	Section 12.2: Fourier Series - Trigonometric Series (Definition 12.2.1 onwards),Convergence of a Fourier Series		
	12	Section 12.3: Fourier Cosine and Sine Series - Introduction, Even and Odd Functions, Properties, Cosineand Sine Series (Definition 12.3.1 onwards).		
		Module III	10	Min 15
III	13	Section 8.2: Systems of Linear Algebraic Equations - Introduction, General Form, Solution, Augmented Matrix, Elementary Row Operations, Elimination Methods.		
	14	Section 8.2: Systems of Linear Algebraic Equations - Homogeneous Systems, Notation		

	15	Section 8.3: Rank of a Matrix -		
		Introduction, A Definition, Row Space, Rank by Row		
	1.6	Reduction, Rank and Linear Systems.		
	16	Section 8.4: Determinants -		
		Introduction, A Definition (Topics up to and including Example 2).		
IV		Module IV		
	17	Section 8.8: The Eigenvalue Problem -		
		Introduction, A Definition (Topics up to and IncludingExample 2)		
	18	Section 8.8: The Eigenvalue Problem -		
		A Definition (Topics from Example 3 onwards), Eigenvalues and Eigenvectors of A^{-1} .	12	Min 15
	19	Section 8.9: Powers of Matrices – Introduction, Computation of A^n , Finding the Inverse		
	20	Section 8.10: Orthogonal Matrices- Introduction, Symmetric matrices, Inner product, Orthogonal matrices, Constructing an orthogonal matrix.		
	21	Section 8.12: Diagonalization- Introduction, Diagoalizable matrix (upto Example 5)		
		Module V		
	1	Initial-Value Problems		
	2	Section 7.6: Vector Spaces -		
	2	Vector Space (Example 2 is optional), Subspace.		
	3	Section 7.6: Vector Spaces -		
	5	Basis, Standard Bases, Dimension, Span		
	4	Differential Equations as Mathematical Models	12	
	5	Second Order Non-Homogeneous Equations-Method of Undetermined Coefficients, Variation of Parameters.		
	6	Linear Models – IVP		
	7	Linear Models - BVP	1	
	8	Half- Range Fourier Series		
	1	Advanced Engineering Mathematics, Engine Kassania, 10th E. P.	a W/:1	India
	1	Advanced Engineering Mathematics, Erwin Kreyszig, 10 th Edition		
	2	Calculus & Analytic Geometry, 9 th Edition, George B. Thomas & Pearson Publications.	Koss L.	Finney,
	3	Calculus, 7 th Edition, Howard Anton, Biven, & Stephen Davis, W	ilev Indi	a
	5	Calculus, / Lution, noward Anton, Diven, & Stephen Davis, W	ney mul	u.

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	3	1	2
CO 2	2	1	3	1	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	2	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	~	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours			
Course Code	MAT3MN201	MAT3MN201			
Course Title	CALCULUS	OF SEVERAL VARIABLE	ES		
Type of Course	Minor				
Semester	Ш				
Academic Level	200 - 299				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4	4	-	60	
Pre-requisites	Calculus of Single Variable				
Course Summary	This course provides a comprehensive study of advanced calculus topics, including partial derivatives, limits, continuity, the chain rule, and vector- valued functions. Students will explore directional derivatives, tangent planes, and extrema of functions of multiple variables, as well as integral calculus techniques such as line integrals, double integrals (including those in polar coordinates), surface integrals, and the applications of these concepts in vector calculus and field theory				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools	
		Level*	Category#	used	
CO1	Apply Multivariable	Ap	Р	Internal	
	Calculus Concepts to			Exam/Assignment/	
	Vector Valued Functions			Seminar/ Viva /	
				End Sem Exam	
CO2	Apply Techniques of	Ap	Р	Internal	
	Multivariable Integration			Exam/Assignment/	
				Seminar/ Viva /	
				End Sem Exam	
CO3	Apply Advanced Theorems	Е	С	Internal	
	in Multivariable Calculus			Exam/Assignment/	
				Seminar/ Viva /	
				End Sem Exam	
# -]	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 				

Textbook	1. Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) ISBN-13: 978-0- 534-46579-7						
	 Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2 						
	J	ones & Barueu Learning LLC (2018) ISBN: 978-1-284-	10590-2	,			
Module	Unit	Content	Hrs	Ext.			
			(48	Marks			
			+12)	(70)			
Ι		Module I (Text 1)	13	Min 15			
	1.	10.4: Polar Coordinates (upto Example 3)					
	2.	11.7: Cylindrical and Spherical Coordinates					
	3.	12.1: Vector Valued Functions					
	4.	12.2: Differentiation & Integration of Vector Valued Functions					
	5.	13.1: Functions of Two or More Variables					
	6.	13.2: Limits & Continuity					
II		Module II (Text 1)	8	Min 15			
	7.	13.3: Partial Derivatives					
	8.	Section 13.1: Separable Partial Differential Equations - Introduction, Linear Partial Differential Equation, Solution of a PDE, Separation of Variables.					
	9.	Section 13.1: Separable Partial Differential Equations - Classification of Equations.					
	10.	13.4: Differentials					
	11.	13.5: The Chain Rule	10				
III		Module III (Text 1)	12	Min 15			
	12	13.6: Directional Derivatives, Gradient Vector of a Scalar Field					
	13	15.1, 15.2: Divergence & Curl of Vector Fields					
	14	15.3: Line Integrals					
	15	15.4: Path Independence & Conservative Vector Fields (Fundamental Theorems of Line Integration – Gradients)					

IV		Module IV (Text 1)	15	Min 15
	15	14.1: Double Integrals		
	16	14.2: Iterated Integrals		
	17	14.3: Double Integrals in Polar Coordinates		
	18	14.4: Applications of Double Integrals		
	19	14.5: Surface Area		
	20	14.6: Triple Integrals		
	21	14.7: Triple Integrals in Cylindrical & Spherical Coordinates		
	22	15.5: Green's Theorem		
V		Module V	12	
	1	Algebra of Complex Numbers, Complex Functions, Complex Differentiation		
	2	Cauchy-Riemann Equations, Analytic Functions		
	3	15.6: Parametric Surfaces		
	4	15.7: Surface Integrals		
	5	15.8: Divergence Theorem		
	6	15.9: Stoke's Theorem		

. References:

1. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.

2. Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.

3. Calculus & Analytic Geometry, 9th Edition, George B. Thomas & Ross L. Finney, Pearson Publications.

4. Thomas' Calculus, 14th Edition, Maurice D. Weir, Christopher Heil, & Joel Hass, Pearson Publications.

5. Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis, Wiley India.

. Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	3	3	1	2
CO 2	3	-	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark	✓
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours					
Course Code	MAT1MN102	MAT1MN102				
Course Title	CALCULUS OF A S	SINGLE VARIABLE				
Type of Course	MINOR					
Semester	Ι					
Academic Level	100-199					
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Set theory along with	an understanding of the	real number sy	vstem.		
Course Summary	This course provides	a foundational understand	ding of calculu	is concepts: From		
	the beginning section	s students learn about lim	its (including	one-sided limits		
	and limits at infinity)	, continuity (definitions a	nd properties),	, and the		
	intermediate value the	eorem. Modules II and III	cover differen	ntiation techniques,		
	including tangent line	es, the definition of deriva	atives, rules of	differentiation		
	(product, quotient, ch	ain), implicit differentiati	ion, and advan	ced topics like		
	L'Hopital's Rule for in	ndeterminate forms. Mod	ule IV focuses	on the analysis of		
	functions, discussing concepts such as increasing/decreasing functions,					
	concavity, inflection points, and techniques for identifying relative extrema					
	graphing polynomials	6.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse limit, continuity and differentiability of a function	An	C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply rules and techniques of differentiation to solve problems, also find limit in indeterminate forms involving transcendental functions	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Draw a polynomial function by analysing monotonicity, concavity and point of inflection using derivatives test	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	ember (R), Understand (U), Apply (Ap)	•		
	ual Knowledge(F) Conceptual Knowledg	ge (C) Procee	dural Knowled	lge (P) Metacognitive
Knowle	dge (M)			

Text book		Anton, Howard, Irl C. Bivens, and Stephen Davis. <i>Calculus transcendentals</i> . 10 th Edition, John Wiley & Sons, 2021.	: early	T
Module	Unit	Content	Hrs 60	External Marks (70)
		Module I		
	1	Section 1.1: Limits (An Intuitive Approach) -		
		Limits, One-Sided Limits, The Relationship Between One-		
		Sided and Two Sided Limits		
	2	Section 1.2: Computing Limits -		
		Some Basic Limits, Limits of Polynomials and Rational		
		Functions as $x \to a$	-	
	3	Section 1.2: Computing Limits -		
		Limits involving Radicals, Limits of Piecewise-Defined		
		Functions	-	
Ι	4	Section 1.3: Limits at Infinity; End Behaviour of a Function	14	
		Limits of Rational Functions as $x \to \pm \infty$ - A Quick Method		
		for Finding Limits of Rational Functions as $x \to +\infty$ or $x \to -\infty$		Min.15
	5	Section 1.5: Continuity -		1111.13
	5	Definition of Continuity, Continuity on an interval, Some		
		Properties of Continuous Functions,		
	6	Section 1.5: Continuity -		
	0	Continuity of Polynomials and Rational Functions,		
		Continuity of Compositions, The Intermediate- Value		
		Theorem.		
		Module II		
	7	Section 2.1: Tangent Lines and Rates of Change -		
		Tangent lines, Slopes and Rate of Change		
	8	Section 2.2: The Derivative Function -		
		Definition of the Derivative Function-Topics up to and		
		including Example 2.		
	9	Section 2.3: Introduction to Techniques of Differentiation -		
		Derivative of a Constant, Derivative of Power Functions,	14	Min.15
II		Derivative of a Constant Times a Function, Derivatives of		
	10	Sums and Differences, Higher Derivatives	-	
	10	Section 2.4: The Product and Quotient Rules -		
		Derivative of a Product, Derivative of a Quotient, Summary		
	11	of Differentiation Rules.	-	
	11	Section 2.5: Derivatives of Trigonometric Functions -		
	12	Example 4 and Example 5 are optional Section 2.6: The Chain Rule	-	
	12	Derivatives of Compositions, An Alternate Version of the		
		Chain Rule, Generalized Derivative Formulas		
		Module III		
	10	Section 3.1: Implicit Differentiation -	1	
	13	Implicit Differentiation (sub section)	10	
	14	Section 3.2: Derivatives of Logarithmic Functions -	1	

	1		1	1
		Derivative of Logarithmic Functions (sub section) Logarithmic Differentiation, Derivatives of Real Powers of x		
ш	15	Section 3.3: Derivatives of Exponential and Inverse Trigonometric Functions - Derivatives of Exponential Functions	-	
	16	Section 3.3: Derivatives of Exponential and Inverse Trigonometric Functions - Derivatives of the Inverse Trigonometric Functions		Min.15
	17	Section 3.6: L'Hopital's Rule; Indeterminate Forms - Inderminate Forms of Type 0/0, Indeterminate Forms of Type $^{\infty}/_{\infty}$		
	18	Section 3.6: L'Hopital's Rule; Indeterminate Forms - Inderminate Forms of Type $0 \cdot \infty$, Indeterminate Forms of Type $\infty - \infty$		
		Module IV		
	19	Section 4.1: Analysis of Functions I: Increase, Decrease, and Concavity - Increasing and Decreasing Functions		
	20	Section 4.1: Analysis of Functions I: Increase, Decrease, and Concavity - Concavity, Inflection Points	-	
IV	21	Section 4.2: Analysis of Functions II: Relative Extrema; Graphing Polynomials - Relative Maxima and Minima, First Derivative Test, Second Derivative Test	10	Min 15
	22	Section 4.2: Analysis of Functions II: Relative Extrema; Graphing Polynomials Geometric Implications of Multiplicity, Analysis of Polynomials		
		Module V		
		Infinite Limits Differentiability, Relation between Derivative and Continuity	_	
V		Parametric Equations, Parametric CurvesInverse Trigonometric Functions and their derivativesTaylor series expansion of functions	12	
		Maclaurin series of sin x, cos x, tan x, log(1+x), log(1-x) etc Binomial expansion of $\frac{1}{(1+x)}$, $\frac{1}{(1-x)}$, $\frac{1}{\sqrt{1+x}}$, $\frac{1}{\sqrt{1-x}}$ etc	-	
		Different coordinate systems: - Cartesian, Spherical, and Cylindrical coordinates Conic sections with vertex other than the origin	-	
		Indeterminate Forms of Type 0^0 , ∞^0 , 1^∞ Graphing Rational Functions		
Refere	nces		1	
Kuut	1	Calculus and Analytic Geometry, 9 th Edition, George B. The L. Finney, Pearson Publications.	omas J	r and Ross
	2	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) I 534-46579-7.	ISBN-1	3:978-0-

3	Marsden, Jerrold, and Alan Weinstein. <i>Calculus I</i> . Springer Science & Business Media, 1985.
4	Stein, Sherman K. <i>Calculus in the first three dimensions</i> . Courier Dover Publications, 2016.

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	2
CO 2	3	1	3	1	2	1	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	✓

Programme	B. Sc. Mathematics Honours					
Course Code	MAT2MN102					
Course Title	CALCULUS AND	MATRIX ALGEBRA				
Type of Course	MINOR					
Semester	II					
Academic Level	100-199					
Course Details	Credit Lecture/Tutorial Practicum Total Hours					
		per week	per week			
	4	4	-	60		
Pre-requisites	Basic Calculus					
Course Summary	Basic Calculus Students learn about antiderivatives, the indefinite and definite integrals, Riemann sums, and the Fundamental Theorem of Calculus. Course explores the average value of functions, evaluating definite integrals by substitution, calculating areas between curves, and finding the length of plane curves. Next it introduces functions of multiple variables, including notation, graphs, limits, continuity, and partial derivatives for functions of two or more variables. Course also focuses on matrix algebra, determinants, eigenvalue problems (including complex eigenvalues), and orthogonal matrices and their properties.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Demonstrate proficiency in applying calculus techniques to solve analytical and geometrical problems involving indefinite and definite integrals, substitution methods, and integration by parts.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO2	Apply multivariable calculus concepts, including functions of multiple variables, limits, continuity, and partial derivatives, to model and analyse real-world phenomena and mathematical problems.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO3	Apply linear algebra principles, such as matrix operations, determinants, and eigenvalue problems, to analyze and solve systems of equations and geometric problems.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
# - Fact	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Text Book	 Howard Anton, Bivens and Stephen Davis, Calculus- Early Transcendentals (10th Edition). Advanced Engineering Mathematics(6/e): Dennis G Zill Jones & Bartlett, Learning, LLC (2018) ISBN: 9781284105902 						
Module	Unit	Hrs 60	External Marks (70)				
		Module I Section 5.2: The Indefinite Integral - Antiderivatives, The	12	Min 15			
	1						
I	2	Indefinite Integral, Integral Curves Section 5.3: Integration by Substitution - u-Substitution, Easy to Recognize Substitutions, Less Apparent Substitutions					
-	3	Section 5.5: The Definite Integral - Riemann Sums and the Definite Integral, Properties of the Definite Integral.					
	4	Section 5.6: The Fundamental Theorem of Calculus - The Fundamental Theorem of Calculus (sub section), The Relationship Between Definite and Indefinite Integrals.					
		13	Min 15				
	5	Section 5.8: Average Value of a Function and its Applications - Average Value of a Continuous Function (up to and including Example 2 only)					
	6	Section 5.9: Evaluating Definite Integrals by Substitution - Two Methods for Making Substitutions in Definite Integrals					
н	7	Section 6.1: Area Between Two Curves - Area Between $y = f(x)$ and $y = g(x)$, Reversing the Roles of x and y					
II	8	Section 6.4: Length of a Plane Curve - Arc Length					
	9	Section 7.2: Integration by Parts - The Product rule and Integration by Parts, Guidelines for Integration by Parts, Repeated Integration by Parts					
	10	Section 7.5: Integrating Rational Functions by Partial Fractions - Partial Fractions, Finding the form of a Partial Fraction Decomposition, Linear Factors, Quadratic Factors (Example 4 is optional), Integrating Improper Rational Functions.					
		Module III	10	Min 15			
	11	Section 13.1: Functions of Two or More Variables: Notation and Terminology, Graphs of Functions of Two Variables.					
III	12	Section 13.1: Functions of Two or More Variables: Level Curves, Level Surfaces.					
	13	Section 13.2: Limits and Continuity - Limit along Curves					
	14	Section 13.2: Limits Continuity - Continuity					
	15	Section 13.3: Partial Derivatives -					

		Partial Derivatives of Functions of Two Variables, The		
		Partial Derivative Function, Partial Derivative Notation,		
		Implicit Partial Differentiation, Partial Derivatives and		
		Continuity		
		Section 13.3: Partial Derivatives		
	16	Partial Derivatives of Functions with more than Two		
	10	Variables, Higher order Partial Derivatives, Equality of		
		Mixed Partials.		
	17	Module IV	13	Min 15
	17	Section 8.1: Matrix Algebra		
	18	Section 8.2: Systems of Linear Algebraic Equations	-	
	19	Section 8.8: The Eigenvalue Problem -		
** 7		Topics up to and including Example 4	-	
IV	20	Section 8.8: The Eigenvalue Problem -		
		Topics from Complex Eigenvalues onwards	_	
	21	Section 8.10: Orthogonal Matrices -		
	21	Topics up to and including Theorem 8.10.3		
	22	Section 8.10: Orthogonal Matrices -		
		Topics from Constructing an Orthogonal Matrix onwards		
		Module V	12	
		Fundamental theorems in Vector Calculus such as Green's		
		theorem, divergence theorem, and the Stokes' theorem.		
		Trigonometric Substitutions		
		Integrating Trigonometric Functions		
		Volume of Solids of Revolution, Area of Surfaces of		
\mathbf{V}				
		The Chain Rule in Partial Differentiation		
		Directional Derivatives and Gradients, Tangent Planes and		
		Normal Vectors		
		Basics of Vector Calculus including the differential operators		
		such as gradient, divergence and curl.		
		Simpsons Rule, Trapezoidal rule in Numerical Integration		
		Algebra of Complex Numbers		
Refere	nces			
	1	Calculus and Analytic Geometry, 9 th Edition, George B. Thor	mas Jr	and Ross L.
		Finney, Pearson Publications.		
	2	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) I	SBN-1	3: 978-0-
		534-46579-7.		
	3	Marsden, Jerrold, and Alan Weinstein. Calculus I. Springer Sc.	ience &	2 Business
		Media, 1985.		
	4	Stein, Sherman K. Calculus in the first three dimensions. Court	ier Dov	ver
		Publications, 2016.		
	5	Kreyszig, Erwin. Advanced Engineering Mathematics 9th Edit.	ion wit	h Wilev Plus
	_	<i>Set.</i> Vol. 334. US: John Wiley & Sons, 2007.		···· / = ·····
	6	Elementary Linear Algebra, Applications version, 9 th edition,	Howa	d Anton
	_	and Chriss Rorres		
	L	ional tonics are exempted for end semester examination 2) F		

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	-	-
CO 2	2	1	2	1	2	1	2	-	-
CO 3	2	1	2	1	2	1	2	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	~	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics F	B. Sc. Mathematics Honours					
Course Code	MAT3MN202						
Course Title	DIFFERENTIAL E	QUATIONS AND FOU	RIER SERIE	S			
Type of Course	Minor						
Semester	III						
Academic Level	200-299						
Course Details	Credit Lecture/Tutorial Practicum Total Hours						
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Calculus and fa	miliarity with Real Numb	pers				
Course Summary	Basic Calculus and familiarity with Real Numbers In Module I students are introduced to various types of differential equations, including linear, separable, exact equations, and Bernoulli's equation. Module II delves deeper into linear equations, both homogeneous and nonhomogeneous. Module III introduces Fourier series, including trigonometric series, Fourier cosine and sine series, and half-range expansions. Module IV transitions into algebra of complex numbers, , and functions of complex variables, including analytic functions and the Cauchy-Riemann equations, which are fundamental in complex analysis.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Apply various methods, such as separation of variables, linear, and exact equations, integrating factors, and substitution, to solve differential equations, including those with constant coefficients and Cauchy-Euler equations.	Ар	C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO2	Analyse and solve partial differential equations, including separable ones, and comprehend Fourier series and their applications in solving differential equations and understanding periodic function	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO3	Apply complex number theory, including arithmetic operations, polar forms, powers, roots, sets in the complex plane, functions of a complex variable, and Cauchy-Riemann equations, to analyze and solve real-world problems in various fields.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
# - Fact	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Text Book	Adva Lear	z Bartle	ett, External	
Module	Unit	Hrs 60	Marks (70)	
		Module I		
	1	Introduction to Differential Equations Section 1.1: Definitions and Terminology Introduction, A Definition, Classification by Type, Notation, Classification by Order, Classification by Linearity, Solution.		
	2	Section 2.2: Separable Equations Introduction, A Definition, Method of Solution.		
Ι	3	Section 2.3: Linear Equations Introduction, A Definition, Standard Form, Method of Solution, An Initial Value Problem	10	
	4	Section 2.4: Exact Equations Introduction, Differential of a Function of Two Variables (Definition 2.4.1 and Theorem 2.4.1 only), Method of Solution.		Min 15
	5			
	6	Integrating Factors Section 2.5: Solutions by Substitutions Bernoulli's Equation		
		Module II		
	7	Section 3.1: Theory of Linear Equations 3.1.2 Homogenous Equations, Linear Dependence and Independence, Solutions of Differential Equations,		
II	8	Section 3.1: Theory of Linear Equations 3.1.3 Nonhomogeneous Equations, Complementary Function		
	9	Section 3.3: Homogeneous Linear Equations with Constant Coefficients Introduction, Auxiliary Equation.	11	Min 15
	10	Section 3.4: Undetermined Coefficients Introduction, Method of Undetermined Coefficients (Topics up to and including Example 4.)		
	11	Section 3.6: Cauchy-Euler Equations Cauchy-Euler Equation (Second Order Only), Method of Solution.		
		Module III		
	12	Section 12.2: Fourier Series Trigonometric Series (Definition 12.2.1 onwards), Convergence of a Fourier Series, Periodic Extension		Min 15
ш	13	Section 12.3: Fourier Cosine and Sine Series Introduction, Even and Odd Functions, Properties, Cosine and Sine Series (Definition 12.3.1 onwards).	13	
	14	Section 12.3: Fourier Cosine and Sine Series Half-Range Expansions.		

		Section 13.1: Separable Partial Differential Equations					
	15	Introduction, Linear Partial Differential Equation, Solution of					
		a PDE, Separation of Variables.					
	16	Section 13.1: Separable Partial Differential Equations					
	10	Classification of Equations.					
		Module IV					
		Section 17.1: Complex Numbers					
	17	Introduction, A definition, Terminology, Arithmetic					
		Operations, Conjugate, Geometric Interpretation					
		Section 17.2: Powers and Roots					
	18	Introduction, Polar Form, Multiplication and Division,					
		Integer Powers of z.					
	10	Section 17.2: Powers and Roots					
IV	19	DeMoivre's Formula, Roots.					
	20	Section 17.3: Sets in the Complex Plane	14	Min 15			
		Introduction, Terminology.					
		Section 17.4: Functions of a Complex Variable					
	21	Introduction, Functions of a Complex Variable, Limits and					
		Continuity, Derivative, Analytic Functions.					
		Section 17.5: Cauchy- Riemann Equations					
	22	Introduction, A Necessary Condition for Analyticity,					
		Harmonic Functions, Harmonic- Conjugate Functions.					
		Module V	12				
		Initial Value Problems					
		Differential Equations as Mathematical Models					
		Method of Variation of Parameters in solving DE					
V		Solving DE with the Runge-Kutte Method					
v		Interpolation, Extrapolation					
		Classical PDEs and Boundary Value Problems					
		Heat Equation					
		Wave Equation					
		Fourier Transform					
Refere	nces						
	1	Advanced Engineering Mathematics, Erwin Kreyszig, 8th Editiv	on, W	iley			
		Student Edition.	, .	5			
	2 Mathematics For Engineers and Scientist, Alan Jeffrey, Sixth Edit						
	3	Complex Analysis A First Course with Applications (3/e), Den	nis Zil	1 & Patric			
	Shanahan Jones and Bartlett, Learning (2015) ISBN 1-4496-9461-6						

Note: Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	3	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathema	atics Honours						
Course Code	MAT1MN103	MAT1MN103						
Course Title	BASIC CALC	ULUS						
Type of Course	Minor							
Semester	Ι							
Academic	100 – 199							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic Set Theor	ry including functions and th	heir algebraic o	perations				
Course	1	vides a comprehensive expl						
Summary	11	begins with fundamental co						
		ns, laying the groundwork for						
		ion techniques, including pr	1	· •				
		derivatives of inverse function						
	•	as Rolle's and Mean Value	· · ·	e				
	-	lores integral calculus, cove	•					
		rical integration techniques	· ·					
	-), and introduces hyperbolic	functions and	their derivatives and				
	integrals.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Apply graphical analysis skills to mathematical models.	Ар	C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO2	Evaluate and solve calculus problems involving limits and continuity.	E	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO3	Apply differentiation and integration techniques to analyse functions.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
* - Reme	ember (R), Understand (U), Ap	oply (Ap), Analyse	e (An), Evaluate ((E), Create (C)				
	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Knowled	lge (M)							

Text Book		Calculus: Early Transcendental Functions (6edn), Ron Larson Edwards Cengage Learning ISBN-13: 978-1-285-77477-0.	and Bru	ice
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Module I		
	1	A quick review of sections 1.1 and 1.2 (not for external exam)		
		Section 1.3 – Functions and their Graphs		
	2	Section 1.5: Inverse Functions -		
		Inverse Functions, Existence of an Inverse Function		
	3	Section 1.6: Exponential and Logarithmic Functions -		
		Exponential Functions, The Number <i>e</i> , The Natural Logarithmic		
Ι		Function		
•	4	Section 2.2: Finding Limits Graphically and Numerically -	13	
		An Introduction to Limits, Limits That Fail to Exist, A Formal		Min 15
		Definition of Limit (examples are optional topics)		
	5	Section 2.3: Evaluating Limits Analytically -		
		Properties of Limits, A Strategy for Finding Limits,		
	6	Section 2.3: Evaluating Limits Analytically -		
		Dividing Out Technique, Rationalizing Technique, The Squeeze		
		Theorem		
		Module II		
	7	Section 2.4: Continuity and One-Sided Limits -		
		Continuity at a Point and on an Open Interval, Properties of		
	0	Continuity, The Intermediate Value Theorem.		
	8	Section 3.1: The Derivative and the Tangent Line Problem -		
	9	The Derivative of a Function, Differentiability and Continuity Section 3.2: Basic Differentiation Rules and Rates of Change – The		
	9	e		
п		Constant Rule, The Power Rule, The Constant Multiple Rule, The Sum and Difference Rules	12	
11	10	Section 3.2 : Basic Differentiation Rules – rest of the section.		Mn 15
	11	Section 3.3: Product and Quotient Rules and Higher Order		
	11	Derivatives -		
		The Product Rule, The Quotient rule, Higher- Order Derivatives		
	12	Section 3.4 The Chain Rule.		
	13	Section 3.5: Implicit Differentiation		
		Implicit and Explicit Functions, Implicit Differentiation,		
		Logarithmic Differentiation		
		Module III		
	14	Section 4.1: Extrema on an Interval -		
		Extrema of a Function, Relative Extrema and Critical Numbers,		Min 15
		Finding Extrema on a Closed Interval		
III	15	Section 4.2: Rolle's Theorem and The Mean Value Theorem -		
111		Rolle's Theorem, The Mean Value Theorem	12	
	16	Section 4.3: Increasing and Decreasing Functions and The First		
		Derivative Test -		
		Increasing and Decreasing Functions, The First Derivative Test		
	17	Section 4.4: Concavity and the Second Derivative Test -		

			-	
		Concavity, Points of Inflection, The Second Derivative Test		
	18	Section 4.6: A summary of Curve Sketching -		
		Analyzing the Graph of a Function		
		Module IV		
	19	Section 5.1: Antiderivatives and Indefinite Integration –		
		Antiderivatives, Basic Integration Rules, Initial Conditions and		
		Particular Solutions.		
	20	Section 5.3: Reimann Sums and Definite Integrals – Reimann		
IV		Sums, Definite Integrals, Properties of Definite Integrals.		
1 V	21	Section 5.4: The Fundamental Theorem of Calculus -	11	Min 15
		The Fundamental Theorem of Calculus, The Mean Value Theorem		
		for Integrals.		
	22	Section 5.4: The Fundamental Theorem of Calculus -		
		Average Value of a Function, The Second Fundamental Theorem		
		of Calculus, Net Change Theorem		
		Module V		
	One	Sided Limits and Discontinuity, Derivatives of Inverse Functions,		
V	Deriv	Derivatives of Trigonometric functions, Limits at Infinity and Horizontal		
v	Asyn	Asymptotes, Numerical Integration, Area problems using Riemann Sums,		
	Hype	rbolic Functions.		
	• •			
Referen	ces:			
1	I. Calc	culus, Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.		
2	2. Calc	culus & Analytic Geometry, (9/e), George B. Thomas & Ross L. Finney	, Pearsor	l
	Publ	ications		
3	Calc	ulus (7/e) Howard Anton Biven & Stephen Davis Wiley India		

- 3. Calculus, (7/e), Howard Anton, Biven, & Stephen Davis, Wiley India
- 4. Calculus, (7/e)., Howard Anton, Biven, & Stephen Davis, Wiley India.
- 5. Calculus: Early Transcendentals, (4/e), Dennis G. Zill and Warren S. Wright

Note: 1) Optional topics are exempted for end semester examination.2) Proofs of all the results are also exempted for the end semester exam.,

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	1	3	1	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	✓

Programme	B.Sc. Mathematics Honours					
Course Code	MAT2MN103					
Course Title	ANALYSIS A	ANALYSIS AND SOME COUNTING PRINCIPLES				
Type of Course	Minor					
Semester	Π					
Academic	100 - 219					
Level						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Basic Calculus	and familiarity with Real N	umber system.			
Course	This course co	overs fundamental topics	in calculus an	d complex analysis,		
Summary	beginning with	sequences and series in Me	odule I, explori	ing convergence tests		
	like the nth-terr	n test, comparison tests, and	d alternating ser	ries. Module II delves		
	into complex n	umbers and functions, disc	ussing the arith	metic and geometric		
	properties of c	omplex numbers, along with	ith polar and e	xponential forms. In		
	Module III, the	focus shifts to limits, contin	uity, and differe	entiability of complex		
		iding the Cauchy-Riemann				
		e IV introduces counting				
	combinations, t	he pigeonhole principle, and	d basic element	s of probability.		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Describe and apply convergence tests for sequences and series.	Ap	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO2	Demonstrate proficiency in manipulating complex numbers and functions.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	Evaluate limits, continuity, and differentiability of real and complex functions.	Е	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
# - Fact	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Text B	ook	 Calculus: Early Transcendental Functions (6/e), Ron Larso Edwards, Cengage Learning ISBN 13: 978-1-285-77477-0. Complex Analysis A First Course with Applications (3/e), I Patric Shanahan Jones and Bartlett, Learning (2015) ISBN Discrete Mathematical Structures (6/e), Bernard Kolman, F Sharon C. Ross, Pearson ISBN 978-93-325-4959-3)ennis Z 1-4496-9	ill & 9461-6
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Module I (Text 1)		
	1	Section 9.1: Sequences - Sequences (sub section), Limit of a Sequence, Monotonic Sequences and Bounded Sequences.		
	2	Section 9.1: Sequences Monotonic Sequences and Bounded Sequences		
Ι	3	Section 9.2: Series and Convergence - Infinite Series, Geometric Series, nth-Term Test for Divergence	- 13	Min 15
	4	Section 9.3: The Integral Test and p-Series - The Integral Test, p-series and Harmonic Series	15	
	5	Section 9.4: Comparisons of Series - Direct Comparison Test, Limit Comparison Test		
	6	Section 9.5: Alternating Series - Alternating Series (sub section), Alternating Series Remainder, Absolute and conditional Convergence		
		Module II (Text 2)		
	7	Section 1.1: Complex numbers and their Properties - The Imaginary Unit, Terminology, Arithmetic Operations, Zero and Unity, Conjugate, Inverses		
	8	Section 1.2: Complex Plane - Complex Plane, Vectors, Properties, Distance Again, Inequalities		
п	9	Section 1.3: Polar Form of Complex Numbers - Polar Form, Principal Argument, Multiplication and Division, Integer Powers of <i>z</i> , de Moivre's Formula		Min
	10	Section 1.4: Powers and Roots - Roots, Principal nth Root	13	15
	11	Section 1.5: Sets of Points in the Complex Plane - Circles, Disks and Neighborhoods, Open Sets, Annulus, Domain, Regions, Bounded Sets		
	12	Section 2.1: Complex Functions - Introduction, Function, Real and Imaginary Parts of a Complex Function, Exponential Function		
		Module III (Text 2)		1
III	13	Section 3.1: Limits and Continuity - Introduction, Real Limits, Complex Limits (definition only), Real Multivariable Limits (Example 2 and Problems Using Epsilon Delta		

		Continuity of Real Functions, Continuity of Complex Functions (Example 6 is optional), Properties of Continuous Functions.	12	Min 15
	15	Section 3.2: Differentiability and Analyticity -		15
		Introduction, The Derivative, Rules of Differentiation		
	16	Section 3.2: Differentiability and Analyticity -		
		Analytic Functions, Entire Functions, Singular Points, An Alternate		
		Definition of $f'(z)$.		
	17	Section 3.3: Cauchy -Riemann Equations -		
		Introduction, A Necessary Condition for Analyticity, A Sufficient		
		Condition for Analyticity		
	18	Section 3.4: Harmonic Functions		
		Introduction, Harmonic Functions, Harmonic Conjugate Functions		
		Module IV (Text 3)		
	19	Chapter 3: Counting		
		Section 3.1 - Permutations		
	20			Min
IV	Section 3.2 - Combinations		10	
	21	Chapter 3: Counting	10	15
		Section 3.3 – Pigeonhole Principle 22 Chapter 3: Counting		
	22			
		Section 3.4 – Elements of Probability		
		Module V		
		rn Recognition for Sequences, Rearrangement of Series, The Ratio		
V		The Root Test, Taylor Polynomials and Approximations, Power	12	
		s, Taylor Series, Maclaurin Series, Complex Functions as Mappings,		
<u> </u>		ar Mappings, Special Power Functions, Relations and Di Graphs.		
Reference				
		Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.		
		& Analytic Geometry, (9/e)., George B. Thomas & Ross L. Finney, Pea	rson	
	cations			
		(7/e), Howard Anton, Biven, & Stephen Davis, Wiley India.		
		Early Transcendentals, (4/e)., Dennis G. Zill and Warren S. Wright.		
		d Engneering Mathematics, (10/e), Erwin Kreyszig, John Wiley and Sor		:11
		Variables and Applications, (8/e), James Brown and Ruel Churchill, Mc	Graw-H	111
		l (UK) Ltd Aathematics (6/e) Richard Johnsonbaugh Pearson		
		Aathematics, (6/e), Richard Johnsonbaugh, Pearson ptional topics are exempted for end semester examination.		

(otor 1) optional topics are exempted for the semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	-	-
CO 2	2	1	2	1	1	1	2	-	-
CO 3	2	1	2	1	1	1	3	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	~	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathematics I	BSc Mathematics Honours					
Course Title	MATRIX ALGEI	BRA AND VECTOR CAI	CULUS				
Course Code	MAT3MN203	MAT3MN203					
Type of Course	Minor						
Semester	III						
Academic Level	200 - 299						
	<i>a</i>						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Calculus and	d familiarity with Euclidian	Geometry.				
Course	This course cover	s fundamental concepts in	vectors, vect	or calculus, and			
Summary	matrices. Students	will explore vectors in 2-sp	ace and 3-space	ce, including dot			
	and cross products,	as well as lines and planes	in 3-space. The	e vector calculus			
	portion includes ve	ector functions, partial and	directional der	ivatives, tangent			
	planes, normal line	s, curl, divergence, line inte	grals, double i	ntegrals, surface			
	integrals, and tripl	e integrals. Additionally,	the course del	ves into matrix			
	algebra, systems of	linear equations, matrix rar	ik, and the eige	envalue problem.			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools		
		Level*	Category#	used		
CO1	Discuss the geometry of Vectors in two- and three-dimensional spaces	U	С	Internal Exam/ Assignment/ Seminar/		
	T. T			Viva / End Sem Exam		
CO2	Discuss the basic concepts of matrices, and evaluate the solutions of system of linear equations using matrices.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	Describe the idea of eigen values and eigen vectors.	U	С	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam		
- Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)					

		nced Engineering Mathematics, 6 th Edition, Dennis G. Zill, JLC (2018) ISBN: 978-1-284-10590-2.	Jones &	z Bartlett
Module	Unit	Content	Hrs (60)	Ext. Marks (70)
Ι		Module I		
	1	Section 7.1-Vectors in 2 -Space (quick review)		
	2	Section 7.2-Vectors in 3-Space (quick review)	11	Min. 15
	3	Section 7.3- Dot Product up to and including Example 5		
	4	Section 7.4- Cross Product up to and including Example 3		
	5	Section 7.5- Lines and Planes in 3-space- upto and including Example 6		
	6	Section 7.5- Lines and Planes in 3-space- From Planes: Vector Equation onwards		
Π		Module II		
	7	Section 9.1 – Vector Functions		
	8	Section 9.4 – Partial Derivatives		
	9	Section 9.5 – Directional Derivative – upto and including Example 4.	15	Min. 15
	10	Section 9.5 – Functions of Three Variables onwards.		
	11	Section 9.6 – Tangent Planes and Normal Lines – upto and including Example 4		
	12	Section 9.6 – Topics from Normal Line onwards		
	13	Section 9.7 – Curl and Divergence -		
ш		Module III		
	14	Section 9.8 – Line Integrals – upto and including Example 5.		Min. 15

15	Section 9.10 – Double Integrals – upto and including Example 2	12	
16	Section 9.13 – Surface Integrals – upto and including Example 4		
17	Section 9.15 – Tripple Integrals (Examples 5 and 7 are optional)		
	Module IV		
18	Section 8.1- Matrix Algebra.		
19	Section 8.2-Systems of Linear Algebraic Equations. Up to and including Example 7	10	Min. 15
20	Section 8.2-Systems of Linear Algebraic Equations. From Homogeneous Systems onwards till end omit chemical equations		
21	Section 8.3 -Rank of a Matrix.		
22	Section 8.8-The Eigenvalue ProblemUp to and including Example 4		
	Module V	12	
	Vector Spaces, Gram- Schmidt Orthogonalization (for instance, refer sections 7.6 and 7.7) Green's Theorem, Stocke's Theorem and Divergence Theorem (for instance, refer sections 9.12, 9.14 and 9.16) Complex Eigen Values Eigen Values and Singular Matrices. Eigen Values and Eigen Vectors of inverse of A Improper Integrals, Beta and Gama Functions		
	References:		
	1. Calculus and Analytic Geometry (9 th Edn), George B		
	$2. \Lambda$ i resiminan monors course in carcuius and Analytic		
	Geometry, Emil Artin (Author), Marvin J Greenberg		
	16 17 18 19 20 21	2 16 Section 9.13 – Surface Integrals – upto and including Example 4 17 Section 9.15 – Tripple Integrals (Examples 5 and 7 are optional) 17 Section 9.15 – Tripple Integrals (Examples 5 and 7 are optional) 18 Section 8.1- Matrix Algebra. 19 Section 8.2-Systems of Linear Algebraic Equations. Up to and including Example 7 20 Section 8.2-Systems of Linear Algebraic Equations. From Homogeneous Systems onwards till end omit chemical equations 21 Section 8.3 -Rank of a Matrix. 22 Section 8.8-The Eigenvalue ProblemUp to and including Example 4 Module V Volde V Vector Spaces, Gram- Schmidt Orthogonalization (for instance, refer sections 7.6 and 7.7) Green's Theorem, Stocke's Theorem and Divergence Theorem (for instance, refer sections 9.12, 9.14 and 9.16) Complex Eigen Values Eigen Values and Singular Matrices. Eigen Values and Eigen Vectors of inverse of A Improper Integrals, Beta and Gama Functions References: 1. Calculus and Analytic Geometry (9 th Edn), George B Thomas, Jr. and Ross L Finney, Addison -Wesley Publishing Company.	2 1 2 16 Section 9.13 – Surface Integrals – upto and including Example 4 17 Section 9.15 – Tripple Integrals (Examples 5 and 7 are optional) 18 Section 8.1- Matrix Algebra. 19 Section 8.2-Systems of Linear Algebraic Equations. Up to and including Example 7 10 20 Section 8.2-Systems of Linear Algebraic Equations. From Homogeneous Systems onwards till end omit chemical equations 10 21 Section 8.3 -Rank of a Matrix. 22 22 Section 8.8-The Eigenvalue ProblemUp to and including Example 4 12 Vector Spaces, Gram- Schmidt Orthogonalization (for instance, refer sections 7.6 and 7.7) Green's Theorem, Stocke's Theorem and Divergence Theorem (for instance, refer sections 9.12, 9.14 and 9.16) Complex Eigen Values Eigen Values and Singular Matrices. Eigen Values and Functions 12 References: 1. Calculus and Analytic Geometry (9 th Edn), George B Thomas, Jr. and Ross L Finney, Addison -Wesley Publishing

3. Advanced Engineering Mathematics (10 th Edn), Erwin	
Kreyszig, John Wiley and Sons.4. Improper Riemann Integrals: Ioannis M. Roussos CRC	
Press by Taylor & Francis Group, LLC(2014) ISBN: 978-1-4665-8808-0 (ebook -pdf)	

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	✓

Programme	B.Sc Mathema	tics Honours			
Course Code	MAT1MN104				
Course Title	MATHEMAT	TICAL LOGIC, SET THE	ORY AND CO	MBINATORICS	
Type of Course	Minor				
Semester	Ι				
Academic Level	100 - 199				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4	4	-	60	
Pre-requisites	Higher Second	ary Mathematics.			
Course Summary	This course explores mathematical logic, set theory, and combinatorics, covering fundamental ideas like propositions, logical equivalences, and quantifiers. It introduces set theory concepts such as sets, operations with sets, and cardinality. Additionally, it delves into functions and matrices, along with topics like permutations, combinations, and discrete probability in combinatorics.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used			
		Level*	Category#				
CO1	Analyse propositional logic and	An	Р	Internal			
	equivalences			Exam/Assignment/			
				Seminar/ Viva / End			
				Sem Exam			
CO2	Apply set theory and operations	Ар	С	Internal			
				Exam/Assignment/			
				Seminar/ Viva / End			
				Sem Exam			
CO3	Implement functions, matrices,	Ар	Р	Internal			
	and combinatorics			Exam/Assignment/			
				Seminar/ Viva / End			
				Sem Exam			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

		Mathematics with Applications, (1/e), Thomas Koshy, A 78-0124211803.	cademi	ic Press
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
Ι	1	Module I		
	1	1.1 Propositions: Conjunction, Disjunction.		
	2	1.1 Propositions: Converse, Inverse and Contrapositive.		
	3	1.1 Propositions: Biconditional Statement, Order of Precedence, Tautology, Contradiction and Contingency (Switching network and Example 1.16 are optional).		
	4	1.2 Logical Equivalences (Equivalent Switching Networks, Example 1.23, Fuzzy Logic and Fuzzy Decisions are optional)	15	Min. 15
	5	1.3 Quantifiers (Example 1.28, De Morgan's Laws and example 1.29 are optional)		
	6	1.4 Arguments: Valid and Invalid arguments, (Example 1.33 is optional)		
II		Module II		
	7	2.1 The Concept of a Set - up to and including example 2.7 (Example 2.6 is optional).		
	8	2.1 The Concept of a Set - finite and infinite sets (Topics from the Hilbert Hotel paradoxes onwards are optional).		
	9	2.2 Operations with Sets – up to and including example 2.21.	12	Min. 15
	10	2.2 Operations with Sets – Cartesian product (Fuzzy sets, Fuzzy subsets and operations on fuzzy sets are optional).		
	11	2.4 The Cardinality of a Set (Theorem 2.2 and Algorithm subsets are optional).		
III		Module III		

	12	3.1. The Concept of Functions - up to and including example3.2	10	Min.
	13	3.1. The Concept of Functions – Piecewise definition, sum and product (Example 3.7 is optional).		15
	14	3.2 Special Functions – up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional).		
	15 3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional).			
	16	3.7 Matrices (Proof of theorem 3.12, algorithm product are optional).		
IV		Module IV		
	17	6.1 The Fundamental Counting Principles (Example 6.7 is optional)		
	18	6.2 Permutations - up to and including example 6.13 (Proof of theorem 6.4 is optional)		
	19	6.2 Permutations - Cyclic permutations (Theorem 6.7 and Fibonacci numbers revisited are optional)	11	Min. 15
	20	6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional)		
	21	6.8 Discrete Probability- up to and including example 6.49 (Examples 6.45 and 6.47 are optional)		
	22	6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional)		
V		Module V	12	
	1.	Basic calculus concepts such as limits, continuity, differentia integration. Relations and Digraphs, Conditional Probability, theorem of Probability, Dependent and Independent Events, Distributions, Correlation and Regression, Bisection Method Method, Gauss-Jordan Method.	Multip Probab	olication ility

References:

- 1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).
- 2. Discrete Mathematics with Applications(4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).
- 3. Discrete Mathematics, Gary Chartrand, Ping Zhang, Waveland Press (2011).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	√	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B.Sc Mathema	tics Honours			
Course Code	MAT2MN104				
Course Title	GRAPH THE	ORY AND AUTOMATA			
Type of Course	Minor				
Semester	II				
Academic Level	100 - 199				
			I		
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4	4	-	60	
Pre-requisites	Higher Second	ary Mathematics			
Course	This course int	roduces students to Graph Th	neory and Autor	nata, covering	
Summary	topics such as	graphs, adjacency matrices, a	and isomorphic	graphs in	
	Module I. In Module II, it explores Eulerian and Hamiltonian graphs,				
	including paths, cycles, and connected graphs. Module III focuses on				
	Planar Graphs, Graph Coloring, Trees, and Spanning Trees. Finally,				
	Module IV de	elves into Automata, coverir	ng concepts l	ike formal	
	languages, gra	mmars, and finite state autom	nata.		

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Analyse Graph Structures and	Е	С	Internal			
	Properties			Exam/Assignment/			
				Seminar/ Viva /			
				End Sem Exam			
CO2	Apply Algorithms to Eulerian and	Ap	Р	Internal			
	Hamiltonian Graphs			Exam/Assignment/			
				Seminar/ Viva /			
				End Sem Exam			
CO3	Evaluate Formal Languages and	Е	С	Internal			
	Finite State Automata			Exam/Assignment/			
				Seminar/ Viva /			
				End Sem Exam			
# - 1	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						

Module	Unit	Content	Hrs	Ext.
			(48	Mark
			+12)	(70)
Ι		Module I		
	1	8.1 Graphs - Graph, Simple Graph (Example 8.3 is optional).		
	2	8.1 Graphs - Adjacency and Incidence, Degree of a Vertex, Adjacency Matrix (Example 8.5 and proof of Theorem 8.2 are optional).		
	3	8.1 Graphs – Subgraph of a Graph.	14	Min 15
	4	8.1 Graphs - Complete Graph, Cycle and Wheel Graphs (Fibonacci and Paraffins, Lucas and Cycloparaffins are optional).		
	5	8.1 Graphs - Bipartite graph, Complete Bipartite Graph, Weighted Graph (Graphs and Telecommunications, Graphs and Local Area Networks and A Generalised Handshake Problem are optional).		
	6	8.3 Isomorphic Graphs.		
II		Module II		
	7	8.4 Paths, Cycles and Circuits – Path, Independent Subsets of the Vertex set, Cycle and Circuit (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional).	10	Min.
	8	8.4 Paths, Cycles and Circuits – Connected Graphs (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional).		15
	9	8.5 Eulerian and Hamiltonian graphs- Eulerian Graph (Proof of theorem 8.7, example 8.26, Algorithm Eulerian graph, example 8.27, Algorithm Eulerian circuit, proof of theorem 8.8, example 8.31 are optional).		

	10	8.5 Eulerian and Hamiltonian graphs- Hamiltonian Graph (Knight's tour problem, example 8.34, Travelling Salesperson Problem, Example 8.35 are optional)		
III				
	11			
	12 8.6 Planar Graphs- Degree of a Rregion, Homeomorphic Graphs.		11	Min. 15
	13			
	14			
	15			
IV		Module IV		
	16	2.1 The Concept of Sets – Alphabet, Length of a Word, Language, Concatenation.		
	17	 11.1 Formal Languages - Equality of Words, Concatenation of Languages (Examples 11.2, 11.3, 11.5 and Proof of Theorem 11.1 are optional). 		Min.
	18	11.1 Formal Languages – Kleene Closure.		15
	19	0 11.2 Grammars – Grammars, Phase Structure Grammar.		
	20	11.2 Grammars – Derivation and Language.		
	21	11.3 Finite State Automata – up to and including Example 11.30 (Example 11.27 is optional).		
	22	11.3 Finite State Automata – Equivalent Finite State Automata up to and including example 11.35.		
V	1	12		
	-	puter representation of graphs, minimal spanning trees, rooted phs and Finite state machines	trees,	

References:

1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).

2. Discrete Mathematics with Applications (4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).

3. A First Look at Graph Theory, John Clark and Allan Holton, Allied Publishers (1991).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	1	1	-	3	-	-
CO 2	2	1	2	-	1	1	2	_	-
CO 3	2	1	2	-	1	1	3	-	-

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

End Semester Examinations Internal Exam Assignment Seminar Viva CO 1 \checkmark \checkmark \checkmark \checkmark \checkmark CO 2 \checkmark \checkmark \checkmark \checkmark \checkmark CO 3 \checkmark \checkmark \checkmark \checkmark \checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathem	atics Honours					
Course Code	MAT3MN204	MAT3MN204					
Course Title	BOOLEAN A	LGEBRA AND SYSTEM	OF EQUATIO	NS			
Type of Course	Minor						
Semester	III						
Academic Level	200-299						
			l				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	MAT1MN203	and MAT2MN203					
Course	This course co	omprises four main module	s: Lattice, Boo	olean Algebra,			
Summary	System of Ec	quations, and Eigenvalue a	and Eigenvecto	ors. Module I			
	introduce conc	epts like ordered sets and latt	ices, while Mod	lule II explores			
	Boolean Algeb	ora and its applications. Modu	ile III covers lin	ear systems of			
	equations, inclu	uding Gauss elimination and	determinants. F	inally, Module			
	IV delves into	Eigenvalue and Eigenvectors	s, offering insig	hts into matrix			
	properties and	applications.					

Course Outcome

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Analyse Lattices and Boolean	E	С	Internal				
	Algebra			Exam/Assignment/				
				Seminar/ Viva /				
				End Sem Exam				
CO2	Apply Matrix Operations and	Ар	Р	Internal				
	Linear Systems			Exam/Assignment/				
				Seminar/ Viva /				
				End Sem Exam				
CO3	Analyse Eigenvalue and	An	Р	Internal				
	Eigenvector Problems			Exam/Assignment/				
				Seminar/ Viva /				
				End Sem Exam				
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
	Factual Knowledge(F) Conceptual	• • • •	•					
Metac	ognitive Knowledge (M)	_		-				

Detailed Syllabus:

Textbook	1. Theory and Problems of Discrete mathematics (3/e), Seymour Lipschutz, Marc Lipson, Schaum's Outline Series.								
	2. Ac	2. Advanced Engineering Mathematics (10/e), Erwin Kreyzsig, Wiley India.							
Module	Uni t	Content	Hrs (48 +12)	Ext. Marks (70)					
Ι		Module I (Text 1)	12	Min 15					
	1	14.2 Ordered set							
	2	14.3 Hasse diagrams of partially ordered sets							
	3	14.5 Supremum and Infimum							
	4	14.8 Lattices							
	5	14.9 Bounded lattices, 14.10 Distributive lattices							
	6	14.11 Complements, Complemented lattices							
Π		Module II (Text 1)	10	Min 15					
	7	15.2 Basic definitions							
	8	15.3 Duality							
	9	15.4 Basic theorems							
	10	15.5 Boolean algebra as lattices							
	11	15.8 Sum and Product form for Boolean algebras							
	12	15.8 Sum and Product form for Boolean algebras - Complete Sum and Product forms							
III		Module III (Text 2)	14	Min 15					
	13	7.1 Matrices, Vectors: Addition and Scalar Multiplication							
	14	7.2 Matrix Multiplication (Example 13 is optional)							
	15	7.3 Linear System of Equations- Gauss Elimination							
	16	7.4 Linear Independence- Rank of a matrix- Vector Space (Proof Theorem 3 is optional)							

	17 7.5 Solutions of Linear Systems- Existence, Uniquenes (Proof of Theorem 1, Theorem 2 and Theorem 4 are optional)					
IV	Module IV (Text 2)	12	Min 15			
	18 7.6 Second and Third Order Determinants- up to and including Example 1					
	19 7.6 Second and Third Order Determinants- Third order determinants	•				
	20 7.7 Determinants- Cramer's Rule (Proof of Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are optional)					
	21 7.8 Inverse of a Matrix- Gauss- Jordan Elimination (Proo Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are optional)					
	22 8.1 The Matrix Eigenvalue Problem- Determining Eigenvalues and Eigenvectors (Proof of Theorem 1 and Theorem 2 are optional)					
V	Module V	12				
	Relation on a set, Equivalence relation and partition, Isomorphic or ordered sets, Representation theorem of Boolean algebra, Logic g Skew-symmetric and Orthogonal matrices, Linear Transformation					

References:

1. Howard Anton & Chris Rorres, Elementary Linear Algebra: Application (11/e) : Wiley

2. Ron Larson, Edwards, David C Falvo : Elementary Linear Algebra (6/e), Houghton Mi_in

Harcourt Publishing Company (2009)

3. Thomas Koshy - Discrete Mathematics with Applications-Academic Press (2003)

4. George Gratzer, Lattice theory: First concepts and distributive lattices. Courier Corporation (2009)

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	1	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics	s Honours			
Course Title	MATRIX THEOR	RY			
Course Code	MAT1MN105				
Type of Course	Minor				
Semester	Ι				
Academic Level	100 – 199				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4	4	-	60	
Pre-requisites	Higher Secondary	Algebra			
Course Summary	This course prov	ides a comprehensive int	roduction to	linear algebra,	
	focusing on system	ns of linear equations, matr	ix algebra, det	erminants, and	
	Euclidean vector spaces. Through a blend of theoretical concepts and				
	practical application	ons, students will develop a	a strong found	lation in linear	
	algebra techniques	and their uses in various fie	elds.		

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Explain the fundamental operations	U	С	Internal
	and concepts of systems of linear			Exam/Assignme
	equations, including Gaussian			nt/ Seminar/
	elimination and elementary row			Viva / End Sem
	operations.			Exam
CO2	Apply the properties of determinants	Ap	Р	Internal Exam/
	to evaluate them using cofactor			Assignment/
	expansions and row reduction			Seminar/ Viva/
	techniques, and comprehend the			End Sem Exam
	relationships between matrices and			
	determinants.			
CO3	Analyse the geometry and properties	An	С	Internal Exam/
	of Euclidean vector spaces, including			Assignment/
	norms, dot products, distances,			Seminar/ Viva/
	orthogonality, and the cross product.			End Sem Exam
* - Rem	ember (R), Understand (U), Apply (Ap),	Analyse (An)), Evaluate (E),	Create (C) #
- Factua	ll Knowledge(F) Conceptual Knowledge	(C) Procedur	al Knowledge	(P) Metacognitive
Knowle	edge (M)			

Detailed Syllabus:

Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
Ι		Module I	12	
	1	Section 1.1: -Introduction to systems of linear equations – up to and including Example 5		
	2	Section 1.1: - Rest of the section.		
	3	1.2 :- Gaussian Elimination – up to Example 5	-	
	4	Section 1.2; - From Example 5 onwards.		
	5	Section 1.3: - Matrices and Matrix Operations – up to and including Example 7.		
	6	Section 1.3; - Rest of the section.		
Π		Module II	12	
	7	Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6.		
	8	Section 1.4; - Properties of inverses onwards – up to and including Example 12.		
	9	Section 1.4: - Rest of the section.		
	10	Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional)		
	11	Section 1.6: - More on Linear systems and Invertible Matrices (Proofs of all the theorems are optional)		
	12	Section 1.7; - Diagonal, Triangular and Symmetric Matrices (Proof of theorem 1.7.1 is optional)		
Π		Module III	12	
	13	Section 2.1 :- Determinants by Cofactor expansions		
	14	Section 2.2; - Evaluating determinants by row reduction		
	15	Section 2.3: - Properties of determinants; Cramer's Rule – up to and including Theorem 3.2.5 (proofs of all the results are optional).		
	16	Section 2.3;- up to and including Example 7.		
	17	Section 2.3;- rest of the section.(proofs of all the results are optional)		
V		Module IV	12	
	18	Section 3.1:- Vectors in 2-space, 3-space and n-space		
	19	Section 3.2:- Norm , dot product and distance in \mathbb{R}^n (proofs of all the results are optional).		
	20	Section 3.3: - Orthogonality (proofs of all the results are optional).		
	21	Section 3.4:-The geometry of linear systems.		
	22	Section 3.5:-Cross product (Proof of Theorem 3.5.4 is optional)		
V		Module V x Transformations, Combinatorial approach to determinants, Rank of M a reference 1) Orthogonal Matrices (from reference 1)	12 atrix	

References:

- 1. Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.
- 2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.
- 3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	2	2	3	1	2
CO 2	3	2	3	1	2	2	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Internal Exam Assignment		Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathema	atics Honours				
Course Code	MAT2MN105					
Course Title	VECTOR SPA	CES AND LINEAR TRA	NSFORMATI	ONS		
Type of Course	Minor					
Semester	Π					
Academic	100 - 199					
Level						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Linear Algebra	Course in Semester 1 - Vect	tors and Matric	es		
Course	This course del	ves into advanced concepts	in linear algeb	ra, focusing on		
Summary	general vector spaces, basis and dimension, matrix transformations, and					
	eigenvalues and diagonalization. The course builds on foundational linear					
	<u> </u>	algebra principles and explores their applications in higher-dimensional				
	spaces and com	plex transformations.				

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation			
CO1	Explain concepts related to vector spaces, including understanding vector space axioms, subspaces, and the solution space of homogeneous systems.	Level* U	Category# C	Tools used Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam			
CO2	Apply the concepts of linear independence, coordinates, basis, and dimension within vector spaces.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam			
CO3	Analyse and apply matrix transformations, including basic transformations in R2R2 and R3R3, understanding properties of these transformations, and exploring concepts related to eigenvalues, eigenvectors, and diagonalization of Amatrices.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam			
Factua	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Detailed Syllabus:

Module	Unit	Content	Hrs (60)	Ext. Marks (70)
Ι		Module I	12	
	1	Section 4.1: -Real vector spaces – up to and including Example 8.		
	2	Section 4.1:- Rest of the section.		
	3	Section 4.2: - Subspaces (examples 7, 8 are optional) – up to and Example 10.		
	4	Section 4.2: - From Example 10 to Example 15 (proof of theorem .4.2.3 is optional)		
	5	Section 4.2: - Rest of the section (Linear transformation view point is optional)		
Π		Module II	12	
	6	Section 4.3: - Linear independence – up to and including Theorem 4.3.3		
	7	Section 4.3: - Rest of the section (proofs of all the results are optional).		
	8	Section 4.4:- Coordinates and Basis -up to and including Example 5		
ĺ	9	Section 4.4: - rest of the section from Theorem 4.4.1.		
ĺ	10	Section 4.5:-Dimension – up to and including Example 3.		
	11	Section 4.5: - Rest of the section from Example 3 (proofs of all the		
		theorems are optional).		
Π		Module III	12	
	12	Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators		
	13	Section 4.9:- Rotation Operators – Rotation in R ³		
	14	Section 4.9:- Rest of the section.		
	15	Section 4.10: - Properties of Matrix Transformations – up to and including Example 4.		
ĺ	16	Section 4.10:- rest of the section (proofs of theorems are optional)		
	17	Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional)		
V		Module IV	12	
	18	Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3		
	19	Section 5.1; -From Theorem 5.1.3 to Example 7 (including)		
	20	Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional)		
	21	Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional)		
	22	Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)		
V		Module V	12	

References:

1 Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.

- 2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.
- 3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	-	-
CO 2	2	1	2	1	1	1	2	-	-
CO 3	2	1	3	1	1	1	3	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathema	atics Honours				
Course Code	MAT3MN205					
Course Title	OPTIMIZATI	ON TECHNIQUES				
Type of Course	Minor					
Semester	III					
Academic Level	200 - 299					
Course Details	Credit	Total Hours				
		per week	per week			
	4	4	-	60		
Pre-requisites	Basic understar	ding of linear algebra and ir	ntroductory opti	imization		
	concepts.					
Course Summary	This course pro	vides a comprehensive explo	oration of linear	programming and		
		chniques, focusing on graphi				
	and specialized problems like transportation and assignment. Students will					
	gain practical skills in formulating, solving, and analyzing					
	linear program	ming models, with applic	cations in vari	ious optimization		
	scenarios.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Describe the fundamental properties and types	U	С	Internal
	of linear programming models, distinguishing			Exam/
	between maximization and minimization			Assignment/
	models, and explain various methods used for			Seminar/
	solving linear programming problems			Viva/ End
	including graphical methods.			Sem Exam
CO2	Apply the simplex method to solve both	Ap	Р	Internal
	maximization and minimization linear			Exam/
	programming problems, compare the			Assignment/
	graphical method with the simplex method in terms of efficiency and applicability, and			Seminar/
	demonstrate problem-solving skills through			Viva/ End
	worked-out examples.			Sem Exam
CO3	Evaluate and solve transportation and	An	С	Internal
	assignment problems using specific techniques			Exam/
	such as the North-West corner method, Least			Assignment/
	Cost cell method, Vogel's approximation			Seminar/
	method, and the Hungarian method, while also			Viva/ End
	comparing the transportation model with			Sem Exam
	general linear programming models.			

Detailed Syllabus:

-	ext ok	Operations Research (2/e), P Rama Murthy ,New Age Internation	nal Pub	
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
Ι		Module I	10	Min 15
	1	Section 2.1- Introduction, 2.2- Properties of Linear Programming Model		
	2	Section 2.3-Maximization Models		
	3	Section 2.4- Minimization Models		
	4	Section 2.5- Methods for the Solution of a Linear Programming Problem (up to Problem 2.9)		
	5	Section 2.5- Methods for the Solution of a Linear Programming Problem (From Problem 2.9)		
Π		Module II	13	Min 15
-	6	Section 3.1- Introduction, 3.2- Comparison Between Graphical and Simplex Methods		
	7	Section 3.3- Maximisation Case		
	8			
	9	Section 3.5- Worked Out Problems- Maximization		
	10	Section 3.7- Minimisation Problems		
III		Module III	11	Min 15
	11	Section 3.8- Mixed Problems		
	12	Section 3.10- Artificial Variable Method or Two Phase Method		
	13	Section 3.11- Degeneracy in Linear Programming Problems		
	14	Section 4.1 , 4.2 Transportation model		
	15	Section 4.3 – Comparison between Transportation model and		
		general linear programming model, 4.4- Approach to solution to a		
IV		transportation problem by Transportation Algorithm. Module IV	14	
1 4			17	
	16	Section 4.4.3- Basic feasible solution by North -West corner method		Min 15
	18	Section 4.4.4- Solution by Least Cost cell method	1	
	19	Section 4.4.5- Solution by Vogel's approximation method		
	20	Section 4.4.6- Optimality test- Stepping stone method (Modified		
		distribution method is in open ended module)		
	21	Section 5.1, 5.2 – Assignment model,		
	22	Section 5.4- Approach to solution-Hungarian method(Other		
T 7		methods of solution are optional)	10	
V	C:	Module V	12	
	with	plex method special Cases- Alternate solution. Unbound Solutions ,Pro Unrestricted Variables exportation model. Modified distribution method	olem	
		nsportation model- Modified distribution method ne theory		

References :

1. KV Mittal and C Mohan, Optimization methods in Operations research and system analysis(3/e)

2. Kanti Swarup, PK Gupta and Manmohan, Operations Research(20/e)

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	\checkmark	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathemat	ics Honours		
Course Code	MAT1MN106			
Course Title	PRINCIPLES (DF MICRO ECONOMICS	5	
Type of Course	Minor			
Semester	Ι			
Academic Level	100 - 199			
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours
	4	4	-	60
Pre-requisites	Higher Seconda	ry Mathematics		
Course Summary	the law of dema Functions to und demand elasticity utility maximiza optimization tech	behaviour in Demand and S and, supply, and elasticity, erstand cost structures, reve y. Explore the Theory of C ation and rational consum miques using derivatives in twe constrained optimization	and delve into C enue functions, ar onsumer Behavio er choices, then Economic Applic	Cost and Revenue and their relation to our to comprehend apply economic cations to optimize

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse the factors affecting demand and supply and determine market equilibrium.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Apply the concepts of cost and revenue functions to analyze short-run and long- run production decisions.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate economic functions and optimize using derivatives and Lagrange multipliers.	Е	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	ber (R), Understand (U), Apply (A Knowledge(F) Conceptual Knowl (M)			

Detailed Syllabus:

Text Book		 Principles of Micro Economics, H.L.Ahuja, 15th revised edi Introduction to Mathematical Economics, Edward.T.Dowli Schaum's Outline series, TMH 			
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)	
Ι		Module I	13		
		Cext(1) (Relevant sections of chapter 5 and 7)			
	1	Utility and demand, the meaning of demand and quantity demanded			
	2	The law of demand- demand curve- market demand curve			
	3	Reasons for the law of demand- slope of a demand curve	1		
	4	Shift in demand- demand function and demand curve		Min	
	5	The meaning of supply- supply function- law of supply	-	15	
	6	Slope of a supply curve- shift in supply- market equilibrium			
	7	Price elasticity of demand- measurement of price elasticity- arc elasticity of demand- cross elasticity of demand			
Π		Module II	12		
	8	Text (1) (Relevant sections of chapter 19 and 21)Cost function- Average Cost (AC) and Marginal Cost (MC)			
	9	Short run costs: Total Fixed and Variable Cost - Short Run average cost curve- Average Variable Cost (AVC)- Relationship between AVC and Average product- Average Total Cost- Marginal Cost		Min	
	10	Long run costs: Long Run Average Cost Curve- relationship of Long run Average Cost Curve (LAC) and Long run Marginal Cost Curve (LMC) with SAC and SMC		15	
	11	Revenue function, Marginal Revenue (MR) and			
		Average Revenue (AR)			
	12	Relation between MR, AR and elasticity of demand			
III	г	Module III Sext (1) (Relevant sections of chapter 9 and 11)	10		
	13	Cardinal utility analysis- the law of diminishing marginal utility-			
		illustration of law of diminishing marginal utility			
	14	The law of equi-marginal utility	1	Min 15	
	15	Indifference curves- ordinal utility	-	15	
	16	Marginal rate of substitution- properties of indifference curves	1		
IV	Tex	Module IV t (2) (Chap-4: sec 4.7&4.8, Chap 5: sec 5.1 to 5.7)	13		
	17	Economic application of derivatives- marginal, average, total concepts			

	18	Optimizing economic function		
	19	Functions of several variables and partial derivatives		
	20	Second order partial derivatives, optimization of multivariable function		Min 15
	21	Constrained optimization with Lagrange multipliers		
	22	Significance of Lagrange multipliers, differentials		
V		Module V	12	
		vative of a function, first order derivative, second order derivative, local r ma, optimization	naxima	, local
Reference 1. M		atical analysis for economists, RGD Allen, Macmillan.		

2. Maths for Economics(3/e), Geoff Renshaw, Oxford University Press, N.Y. (2012)

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	1	3	2	3	2	3	1	2
CO 3	3	2	3	1	3	2	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	~	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	✓	\checkmark	√
CO 3	~	\checkmark	\checkmark	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathematics Honours				
Course Code	MAT2MN106				
Course Title	OPTIMIZATIO	DN TECHNIQUES IN EC	ONOMICS		
Type of Course	Minor				
Semester	II				
Academic Level	100 - 199				
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours	
	4	4	-	60	
Pre-requisites	Higher Secondar	ry Mathematics	I		
Course Summary	inequality, inclu and Gini ratio. directional deriv constrained and such as profit ma course covers in	amines the causes, effects ding its measurement using It explores calculus of se vatives, gradients, and op unconstrained, with applic aximization and monopolist put-output analysis, introduce odels to analyse economic	g tools like the L veral variables, ptimization techn cations in economic practices. Addi- cing technologica	orenz curve focusing on hiques, both nic contexts itionally, the l coefficient	

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse the causes and effects of income inequality and evaluate the measures used to reduce it.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Apply the principles of calculus to optimize economic functions without constraints.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate constrained optimization problems using appropriate mathematical techniques.	E	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	ber (R), Understand (U), Apply (A Knowledge(F) Conceptual Knowl			
Knowledge	2 (M)			

Detailed Syllabus:

Text book:		1Micro Economic Theory(6/e), M.L.Jhingan, Vrinda publications.					
		2. Mathematics for Economists, Carl.P.Simon, Lawrence Blume, W.W. Nortan& Company, Inc(1994) ISBN 0-393-95733-0.					
		3. Mathematics for Economics(Revised Edn), Mehta- Madnani, S. Cha	nd.				
Module Unit Content		Content	Hrs (48 +12)	Ext. Marks (70)			
Ι		Module I	10				
	1	Text (1) (Chapter 47) Inequalities in Income- Causes of inequality					
	1	inequalities in mediate causes of mediatily					
	2	Effects of inequality – measures to reduce inequality		Min 15			
	3	Measurement of inequality of income- Lorenz curve Gini ratio					
II		Module II Text(2)(Chap 14: 14.6,14.7,14.8, Chap 17: sec.17.1 to 17.5)	14				
	4	Directional derivatives and gradients, the gradient vector					
	5	Approximation by differential Jacobian derivative					
	6	The chain rule, higher order derivative					
	7	Second order derivatives and Hessians	-				
	8	Young's theorem, economical applications					
	9	Unconstrained optimization: definitions, first order conditions, second order conditions		Min 15			
	10	Global maxima and minima, global maxima of concave functions					
	11	Economic applications- profit maximising firm- discriminating Monopolist					
	12	Least square analysis					
III		Module III	12				
	13	Text (2) (Chap 18: sec.18.1 to 18.7)First order conditions: objective function, constraint functions,					
	13	examples					
	14	Equality constraints, two variables and one equality constraints, several equality constraints		Min			
	15	Inequality constraints, one inequality constraint, several inequality constraints		15			
	1	074	1	I			

	16	Mixed constraints, constrained minimization problems		
	17	Kuhn-Tucker formulation, examples and applications	-	
IV		Module IV	12	
	Т	ext (3) (Chap 19 :sec.19.1 to19.7,19.9,19.11,19.13)		
	18	Introduction- assumption- technological coefficient matrix		
	19	Closed and open input output model- coefficient matrix and open model		Min
	20	The Hawkins- Simon conditions- solution for two industries	-	15
	21	Determination of equilibrium of prices- coefficient matrix and closed model		
	22	The Leontief production function- limitation of input output analysis	-	
V		Module V	12	
		otal derivative, The chain rule, Level curves and their tangents, Concave yex Functions	and	
Referenc				
2. Fi	ındamen	ical Analysis for Economists, R G D Allen, Macmillan. tals of Mathematical Economics(4/e), A C Chiang& K Wainwright, McGraw H ical Optimization and Economic Theory (Classics in Applied Mathematics), Mi		

Intriligator, SIAM(2002)

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	2	2	1	3	2	1
CO 2	3	2	3	1	2	1	3	1	1
CO 3	2	2	3	1	2	1	3	1	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	~	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathemat	ics Honours				
Course Code	MAT3MN206	MAT3MN206				
Course Title	APPLIED MAT	APPLIED MATHEMATICS FOR ECONOMIC ANALYSIS				
Type of Course	Minor					
Semester	III					
Academic Level	200 - 299					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	4	4	-	60		
Pre-requisites	Higher Secondar	Higher Secondary Mathematics				
Course Summary	applications. It proportions, isoc Additionally, it	This course covers differential and difference equations and their economic applications. It explores production functions, including the law of variable proportions, isoquants, and optimization of Cobb-Douglas and CES functions. Additionally, it introduces econometrics, focusing on regression analysis and econometric methodology.				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply differential and difference equations to model and solve economic problems.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Analyse production functions to understand the relationship between inputs and outputs, including optimization techniques.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate econometric models to interpret statistical relationships and economic variables.	E	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	ber (R), Understand (U), Apply (Ap), A Knowledge(F) Conceptual Knowledge (M)	•		

Detailed Syllabus:

Text Books	3 ^r 2. Ec 3. Ba	troduction to Mathematical Economics, Edward.T.Dowling, Schaum's (d edition, TMH. conometrics and Mathematical Economics, SP singh, AP Parashar, HP s asic Economics(4/e), Damodar N Gujarati and Sangeeta, TMH Indian R	ingh, S	.Chand 2008.	
Module	Unit	Content	Hrs	Ext.	
			(48	Marks	
			+12)	(70)	
Ι		Module I	12		
		Text (1) (Chapter 16, 17)			
	1	Differential Equation: definition and concepts			
	2	First order linear differential equation, exact differential equations,			
		integrating factors		Min	
	3	Separation of variables, Economic applications		15	
	4	Difference equations: definitions and concepts			
	5	First order linear difference equations, Economic applications			
	6	The Cobweb Model, the Harrod model			
II		Module II	10		
		Text (2) (Chapter 14: sec 14.1-14.9)			
	7	Meaning and nature of production function, the Law of Variable			
		Proportions			
	8	Isoquants, Marginal Rate of Technical Substitution (MRTS)		Min 15	
	9	Producers' equilibrium, expansion of path.		15	
	10	The elasticity of substitution, ridge lines and Economic region of production			
III		Module III	14		
		Text (1&2)			
		pter 14: sec 14.10 to 14.13 of text 2, Chap 6: sec 6.9 &6.10 of Text 1)			
	11	Euler's theorem (Statement only), Euler's theorem and homogenous		٦ <i>.</i>	
	10	production function		Min 15	
	12 13	Cobb Douglas production function, properties, limitations		15	
	13	CES production function, properties, advantages, limitations Returns to scale, Cobb Web theorem			
	14	Optimization of Cobb Douglas, Optimization of CES production			
	15	Function			
IV		Module IV	12		
		- Text (3) (Pages 1 to 59)			
	16	Introduction to Econometrics			
	17	Statistical v/s deterministic relationships, regression v/s correlation		_	
	18	Types of data, Measurements of Economic variables		Min 15	
	19	Methodology of Econometrices			
	20	Two variable regression analysis			
	21	Population regression function (PRF), Stochastic specification of PRF			
	22	Sample regression function (SRF)			

V		12	
	Module V		
	Matrix solution of Simultaneous Differential and Difference equations, Difference	ntiation	n of
	Exponential and Logarithmic functions		
Reference	es:		
1 Mather	natical Analysis for Economists, RGD Allen, MacMillan.		
2 Fundan	nentals of Mathematical Economics, A C Chiang & K Wainwright (4/e,) McGra	w Hill	
3 Introdu	ctory Econometrics: A Modern Approach (6/e), Jeffrey M. Wooldridge, Cengag	e learn	ing
2016			

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
 - Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

ONLINE COURSES

(These courses are currently available on the government portal SWAYAM. If they are removed in the future, the board will update the course listings accordingly)

I. <u>The course in brackets, including its course code, is equivalent to the online</u> <u>course specified against it.</u>

1. (MAT1CJ101 Differential Calculus + MAT2CJ101 Integral Calculus)

https://onlinecourses.nptel.ac.in/noc24_ma47/preview

Calculus of One Real Variable By Prof. Joydeep Dutta | IIT Kanpur

2. (MAT3CJ201 MULTIVARIABLE CALCULUS)

https://onlinecourses.nptel.ac.in/noc24_ma52/preview

Calculus of Several Real Variables By Prof. Joydeep Dutta | IIT Kanpur

3. (MAT4CJ203 REAL ANALYSIS I) https://onlinecourses.swayam2.ac.in/cec24_ma01/preview

Real Analysis

By Prof. Surajit Borkotokey | Dibrugarh University

4. (MAT5CJ302 ABSTRACT ALGEBRA I)

https://onlinecourses.nptel.ac.in/noc24_ma50/preview

Introduction to Abstract Group Theory By Prof. Krishna Hanumanthu | Chennai Mathematical Institute

5. (MAT5CJ303 COMPLEX ANALYSIS I + MAT6CJ304 COMPLEX ANALYSIS II)

https://onlinecourses.nptel.ac.in/noc24_ma60/preview

Complex Analysis

By Prof. Pranav Haridas | Kerala School of Mathematics

6. (MAT8EJ401 Advanced Topology)

https://onlinecourses.nptel.ac.in/noc24_ma74/preview

An Introduction to Point-Set-Topology Part-II By Prof. Anant R. Shastri | IIT Bombay

7. (MAT8EJ402 PARTIAL DIFFERENTIAL EQUATIONS)

https://onlinecourses.nptel.ac.in/noc24_ma73/preview

Partial Differential Equations By Prof. Sivaji Ganesh | IIT Bombay

8. (MAT8EJ406 OPERATIONS RESEARCH)

https://onlinecourses.swayam2.ac.in/cec24_ma05/preview

Operations Research By Professor Bibhas C. Giri | Jadavpur University

II. <u>The following courses are intended to offer students additional</u> credits beyond their regular credits.

- <u>https://onlinecourses.nptel.ac.in/noc24_ma42/preview</u>
 Set Theory and
 Mathematical Logic By
 Prof. Amit Kuber | IIT
 Kanpur (For first year students)
 - <u>https://onlinecourses.swayam2.ac.in/cec24_ma17/preview</u>
 Logic and Sets
 By Mr. Mohamed Nishad Maniparambath |
 Farook College, Kozhikode
 - 3. <u>https://onlinecourses.nptel.ac.in/noc24_ma89/preview</u> A Basic Course in Number Theory

By Prof. Shripad Garge | IIT Bombay

Model Question Papers First Semester

FIRST SEMESTER B.Sc. (STCFYUGP) DEGREE EXAMINATION 2024

MAT1CJ101 / MAT1MN100: DIFFERENTIAL CALCULUS (Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

[Answer All. Each question carries 3 marks] (Ceiling: 24 Marks)

- 1. Determine the domain of the composite function $f \circ g$ of the functions $f(x) = \sqrt{x}$ and g(x) = x + 1. Evaluate f at the points g(3) and f(9).
- 2. Evaluate $\lim_{x\to 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$.
- 3. Does the curve $y = x^4 2x^2 + 2$ have any horizontal tangents? If so, where?
- 4. The curve $y = ax^2 + bx + c$ passes through the point (1,2) and is tangent to the line y = x at the origin. Find *a*, *b* and *c*.
- 5. Find $\frac{dy}{dx}$ if $2y = x^2 + \sin y$.
- 6. Find the normal to the curve $x^2 xy + y^2 = 7$ at the point (-1,2).
- 7. Find the absolute extrema of $f(x) = x^{\frac{2}{3}}$ on [-2,3].
- 8. If f'(x) = 0 at each point of an interval *I*, then show that f(x) = C for all x in *I*, where C is a constant.
- 9. Give an example of a function defined on [0,1] that has neither a local maximum nor a local minimum value at 0.
- 10. Show that $\lim_{x\to\infty} \frac{1}{x} = 0$.

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

- 11. Give an equation for the shifted graph of $x = 3y^2$ up 2 and right 3 units. Then sketch the original and shifted graphs together.
- 12. Is any real number exactly 1 less than its cube? Justify your answer.
- 13. Define the left-hand limit of a function f at a point x_0 . Give one example.
- 14. Find the average rate of change of f(t) = 1/t with respect to t over the interval from t = 2 to t = 3.
- 15. What is implicit differentiation? When do you need it? Give examples.
- 16. Show that the function $f(x) = x^4 + 3x + 1$ has exactly one zero in the interval [-2, -1].
- 17. Using the Sandwich Theorem to find the asymptotes of the curve $y = 2 + \frac{\sin x}{x}$.
- 18. Find a function that satisfies the following conditions and sketch its graph.

$$\lim_{x \to \pm \infty} f(x) = 1, \lim_{x \to 1^-} f(x) = \infty, \lim_{x \to 1^+} f(x) = -\infty$$

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

19. (a) Find the intervals on which f(x) = -x³ + 12x + 5, -3 ≤ x ≤ 3 is increasing and decreasing. Where does the function assume extreme values and what are these values?
(b) Show that f(x) = x²+x-6/x²-4 has a continuous extension to x = 2, and find that extension.
20. Graph the function y = x³+1/x.

FIRST SEMESTER B.Sc. (STCFYUGP) DEGREE EXAMINATION 2024

MAT1MN101: CALCULUS (Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

- 1. Calculate the average rate of change of the function $f(x) = x^2 + 2x$ over the interval [0,2].
- 2. What is the slope of the tangent line to the graph of $f(x) = \frac{1}{1+x^2}$ at (-1,1).
- 3. Find the points on the graph of $f(x) = x^4 2x^2 + 2$ where the tangent line is horizontal.
- 4. Find functions f and g such that $F(x) = \sin(x^2)$ can be written as F(x) = f(g(x)). Also find F'(x).
- 5. If $y = 2x^2 x + 1$, find Δy approximately using derivatives when x changes from 1 to 0.5.
- 6. Find the relative extrema of $f(x) = x^4 4x^3 + 12$.
- 7. Determine the intervals where the graph of $f(x) = x^{2/3}$ is concave upward.
- 8. Find $\int (x+1)(x^2-2)dx$.
- 9. Find $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$.
- 10. Find the average value of the function $f(x) = 4 x^2$ over the interval [-1,3].

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

- 11. Find an equation of the tangent line to the graph of $x^2 + y^2 = 4$ at the point $(1, \sqrt{3})$
- 12. The volume V of a cube with sides of length 'x ' inches is changing with respect to time, in seconds. How fast is the volume of the cube increasing when the side of the cube is 10 in . long and increasing at the rate of 0.5in/sec?
- 13. Find the extreme values of the function

$$f(x) = 3x^4 - 4x^3 - 8 \text{ on } [-1,2]$$

14. Verify the Mean Value theorem for the function

$$f(x) = x^3$$
 on $[-1,1]$

- 15. Evaluate $\lim_{n\to\infty}\sum_{1}^{n}\left[\left(\frac{k}{n}\right)^{2}+2\right]\left(\frac{4}{n}\right)$.
- 16. The velocity function of a car moving along a straight road is given by v(t) = t 20 for $0 \le t \le 40$. Show that at t = 40, the car will be in the same position as it was initially.
- 17. Find the area of the regions between the graphs of $y = x^2 + 2$ and y = x 1 and the vertical lines x = -1&x = 2.

18. Find the volume of the solid obtained by revolving the region under the graph of $y = \sqrt{x}$ on [0,2] about the *X*-axis.

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

- 19. (a) Find the points of inflection of f(x) = (x 1)^{1/3}.
 (b) Find the relative extrema of f(x) = x³ 3x² 24x + 32 using the second derivative test.
- 20. Sketch the graph of the function

$$f(x) = \frac{x^2}{x^2 - 1}$$

FIRST SEMESTER B.Sc. (STCFYUGP) DEGREE EXAMINATION 2024

MAT1MN103: BASIC CALCULUS (Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

[Answer All. Each question carries 3 marks] (Ceiling: 24 Marks)

- 1. Find the domain of the function $f(x) = \sqrt{x-1}$
- 2. Solve: $\ln(2x 3) = 5$
- 3. Show that the function $f(x) = x^3 + 2x 1$ has a zero in the interval [0,1].
- 4. Use the quotient rule to differentiate $f(x) = \frac{\sqrt{x}}{x^3 + 1}$
- 5. Find $\frac{dy}{dx}$ given that $y^3 + y^2 5y x^2 = -4$
- 6. Solve $\arctan(2x 1) = \frac{\pi}{4}$ for x.
- 7. Define increasing function on a interval. Give one example.
- 8. Find the points of inflection of $f(x) = x^3 6x^2 + 12x$.

9. Find the general solution of the differential equation $\frac{dy}{dt} = 9t^2$

10. Evaluate the integral $\int_{-1}^{2} (x^2 - 3x + 2) dx$.

Section B [Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

- 11. Show that the functions f and g are inverses of each other, where $f(x) = 2x^3 1$ and $g(x) = \sqrt[3]{\frac{x+1}{2}}$.
- 12. Show that the limit $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.
- 13. Evaluate: $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$
- 14. Using formal definition of derivatives, evaluate f'(x) for the function $f(x) = \sqrt{x}$
- 15. Find an equation of the tangent line to the graph of $f(x) = \frac{3-\frac{1}{x}}{x+5}$ at (-1,1).
- 16. Find the extrema of $f(x) = 2x 3x^{2/3}$ on the interval [-1,3].
- 17. Find the two *x*-intercepts of the function $f(x) = x^2 x 2$ and show that f'(x) = 0 at some point between the two *x*-intercepts.
- 18. Evaluate $\int_0^2 |2x 1| dx$

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

- 19. Analyze and Sketch the graph of the function $f(x) = \frac{x^2 2x + 4}{x 2}$.
- 20. (a). Find the average value of $f(x) = 3x^2 2x$ on the interval [1,4]. (b). Find the derivative of $F(t) = \int_{\pi/2}^{x^2} \cos t dt$.

FIRST SEMESTER B.Sc. (STCFYUGP) DEGREE EXAMINATION 2024

MAT1MN104: MATHEMATICAL LOGIC, SET THEORY AND COMBINATORICS

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

[Answer All. Each question carries 3 marks] (Ceiling: 24 Marks)

- 1. Give truth tables for conjuction and disjunction of two propositions.
- 2. Rewrite the proposition "for each integer x, there exists an integer y such that x + y = 0 " symbolically.
- 3. Define contradiction. Give example.
- 4. Let $A = \{a, b, x, y, z\}, B = \{c, d, e, x, y, z\}$, and $U = \{a, b, c, d, e, w, x, y, z\}$. Find $(A \cup B)'$ and $A' \cap B'$.
- 5. Let |A| = 3, |B| = 5 and $|A \cap B| = 2$. Find $|A \cup B|$.
- 6. List the elements of the Cartesian product $A \times B$, where $A = \{1,2\}$ and $B = \{a, b, c\}$.
- 7. Let $A = \begin{bmatrix} 2 & -3 & 7 \\ 0 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 0 & -1 \end{bmatrix}$. Find A + B
- 8. Find the number of ways of drawing a red queen or a black king from a standard deck of playing cards.
- 9. Find the number of words that can be formed by scrambling the letters of the word SCRAMBLE.
- 10. Suppose a card is drawn at random from a standard deck of playing cards. Find the probability that it will be a spade.

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

11. Show that $p \to q \equiv \sim q \to \sim p$

12. Simplify the set expression $(A \cap B') \cup (A' \cap B) \cup (A' \cap B')$.

13. Using the principle of inclusion-exclusion, find the number of elements in the union of three sets *A*, *B*, and *C* where |A| = 10, |B| = 15, |C| = 20, $|A \cap B| = 5$, $|A \cap C| = 4$, $|B \cap C| = 3$, and $|A \cap B \cap C| = 2$

- 14. Define absolute value function and draw its graph.
- 15. Find the number of positive integers \leq 3000 and not divisible by 7 or 8.

16. Let $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 4 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -2 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$. Find *AB* and *BA*, if defined.

17. Find the number of groups that can be formed from a group of seven marbles if each group must contain at least three marbles.

18. Find the probability of obtaining at least one head when three coins are tossed.

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

19. Let $A = \begin{bmatrix} 2 & -3 \\ 5 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -3 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & -2 & 1 \\ -3 & 0 & 4 \end{bmatrix}$. (a). Show that A + (-A) = O(b). Show that A(B + C) = AB + AC.

20. (a). Explain converse, inverse, and contrapositive of a proposition with examples.
(b). Verify that ~ (p ∨ q) ≡~ p ∧~ q and ~ (p ∧ q) ≡~ p ∨~ q

FIRST SEMESTER B.Sc.(STCFYUGP) DEGREE EXAMINATION 2024

MAT1MN105: MATRIX THEORY (Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

- 1. Use parametric equations to describe the solution set of the linear equation 7x 5y = 3
- 2. If $A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$, find $2A^T + B$
- 3. Give an example to show that matrix multiplication is not commutative
- 4. What conditions must b₁, b₂ and b₃ satisfy in order for the system of equations x₁ + x₂ + 2x₃ = b₁
 x₁ + x₃ = b₂
 2x₁ + x₂ + 3x₃ = b₃ to be consistent
- 5. If $A = \begin{bmatrix} 3 & 2 & 6 \\ 0 & 1 & -2 \\ 0 & 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 7 \\ 0 & 5 & 3 \\ 0 & 0 & 6 \end{bmatrix}$, find the diagonal entries of *AB* by inspection. 6. If $A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$, find det(A) 7. Find adjoint of the matrix $A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$
- 8. If A, B are square matrices of same order, check whether det(A + B) = det(A) + det(B)
- 9. If $\mathbf{u} = (1,3,-2,7)$ and $\mathbf{v} = (0,7,2,2)$, find the dot product of the vectors \mathbf{u} and \mathbf{v} . Also find the distance between \mathbf{u} and \mathbf{v}
- 10. Find the initial point of the vector that is equivalent to $\mathbf{u} = (1,2)$ and whose terminal point is B(2,0)

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

11. Solve the linear system

4x - 2y = 116x - 8y = 4

12. Solve by Gauss-Jordan elimination. $x_1 + 3x_2 - 2x_3 + 2x_5 = 0$

- $2x_{1} + 6x_{2} 5x_{3} 2x_{4} + 4x_{5} 3x_{6} = -1$ $5x_{3} + 10x_{4} + 15x_{6} = 5$ $2x_{1} + 6x_{2} + 8x_{4} + 4x_{5} + 18x_{6} = 6$ 13. Using the row operations find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ 14. If $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$, show that $(A^{-1})^{3} = (A^{3})^{-1}$
- 14. If $A = \begin{bmatrix} & \\ 1 & 3 \end{bmatrix}$, show that $(A^{-1})^3 = (A^3)^{-1}$ 15. Use row reduction to show that $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b)$
- 16. Use Cramer's rule to solve

 $\begin{aligned} x_1 + +2x_3 &= 6 \\ -3x_1 + 4x_2 + 6x_3 &= 30 \\ -2x_1 - 2x_2 + 3x_3 &= 8 \end{aligned}$

- 17. Find vector and parametric equations for the line in R^2 that passes through the points P(0,7) and Q(5,0)
- 18. Find vector and parametric equations for the line in R^2 that passes through the points P(0,7) and Q(5,0)

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$ 19. (a) Solve the linear system by Gaussian elimination

$$2x_1 + 2x_2 + 2x_3 = 0$$

-2x_1 + 5x_2 + 2x_3 = 1
$$8x_1 + x_2 + 4x_3 = -1$$

(b) If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, show that $(A^{-1})^T = (A^T)^{-1}$ 20. Let $\mathbf{u} = (3, 2, -1), \mathbf{v} = (0, 2, -3), \mathbf{w} = (2, 6, 7).$

Compute **u**. ($\mathbf{v} \times \mathbf{w}$), $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ and ($\mathbf{u} + \mathbf{v}$) × \mathbf{w}

First Semester **B.Sc.** (STCFYUGP) Degree Examinations 2024

MAT1FM105(1): MATRICES AND BASICS OF PROBABILITY THEORY (Credits: 3)

Maximum Time: 1.5 Hours

Maximum Marks: 50

Section A [Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1 If $A = \begin{pmatrix} 2 & -3 \\ 1 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 7 \\ -3 & 4 \end{pmatrix}$. Find $A \times B$
- 2 Determine the value of $\begin{vmatrix} 3 & 2 \\ 7 & 4 \end{vmatrix}$
- 3 Define row matrix and column matrix.
- 4 Write the matrix equation corresponding to

$$2x - 5y = 8$$
$$3x + 9y = -12$$

- 5 Define population and sample
- 6 Define mid-point and relative frequency of a class and give examples.
- 7 Find mean and median of the data 12,13,16,15,13,14 and 15.
- 8 Write the sample space of an experiment consists of tossing a coin and then rolling a six-sided die.
- 9 Write the probability of the complement of an event *E* in terms of probability of *E*
- 10 Write the additional rule of probability.

Section **B**

[Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

11. Find the inverse of $A = \begin{pmatrix} 3 & -2 \\ 7 & 4 \end{pmatrix}$ 12. Find the value of $A = \begin{vmatrix} 3 & 4 & -1 \\ 2 & 0 & 7 \\ 1 & -3 & -2 \end{vmatrix}$

13. Use matrices to solve the simultaneous equations

$$3x + 5y = 7$$
$$4x - 3y = 19$$

14 Draw an ogive for the frequency distribution

Class	Frequency
65-104	6
105 - 144	9
145 - 184	6
185 - 224	4
225 - 264	2
265 - 304	1
305 - 344	2

15. Two cards are selected, without replacing the first card, from a standard deck of 52 playing cards. Find the probability of selecting a king and then selecting a queen.

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

16. Solve the following simultaneous equations using Cramer's rule

$$x + y + z = 4
 2x - 3y + 4z = 33
 3x - 2y - 2z = 2$$

17. Find the sample variance and standard deviation of the data 4,7,6,7,9,5,8,10,9,8,7 and 10.