

ST. THOMAS COLLEGE (AUTONOMOUS) THRISSUR, KERALA - 680 001

College with Potential for Excellence NIRF INDIA Ranking 2021 : 64th

www.stthomas.ac.

PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOMES COURSE OUTCOMES

B.Sc Mathematics

UNDER GRADUATE PROGRAM OUTCOMES:

At the end of Under Graduate Program at St. Thomas College (Autonomous), a student will have obtained:

PO1	Critical Thinking: Ability to take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives
	Effective Communication: Ability to speak read write and
rU2	listen clearly in person and through electronic media in
	English and in one Indian language, and make meaning of the world by connecting people, ideas, books, media and technology
PO3	Effective Citizenship: Ability to demonstrate empathetic social concern and equity-centered national development, and the ability to act with an informed awareness of issues and participate in civic life through volunteering
PO4	Environment and Sustainability: Ability to understand the issues of environmental contexts and sustainable development
PO5	Ethical Living: Ability to recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them
PO6	Social Interaction: Ability to elicit views of others, mediate disagreements and help reach conclusions in group settings
PO7	Problem Solving and Analytical Skills: Ability to think rationally, analyze situations and solve problems adequately

Program Specific Outcomes:

At the end of B.Sc Mathematics at St. Thomas College (Autonomous), Thrissur, a student will have developed:

PSO1	Understand the basic concepts and tools of Mathematical logic, methods of proofs, set theory, Number theory, abstract structures and algebra.
PSO2	Acquire knowledge in Calculus & Geometry.
PSO3	Apply mathematical theories and principles accurately, precisely and effectively.
PSO4	Analyze and solve real world problems applying mathematical models.

Course Outcomes:

B.Sc. Mathematics MTS1 B01 BASIC LOGIC & NUMBER THEORY

CO1	Model problems in mathematics using logic.
CO2	Analyse results involving divisibility, GCD and LCM.
CO3	Understand methods of solving LDE.
CO4	Analyse the theory of congruence.
CO5	Solve congruences using Fermat's Theorem, Wilson's
	Theorem and Euler's Theorem.
CO6	Understand the concept of number theoretic functions.

MTS2 B02 CALCULUS OF SINGLE VARIABLE-1

CO1	Define limit, continuity and differentiability.
CO2	Explain basic theoremsofdifferential calculus.
CO3	Apply the concepts and theorems in calculus to draw the
	graph of a function.
CO4	Define anti derivatives and area under the graph of a
	function.
CO5	Understand basic theorems of integral calculus.
CO6	Apply the concept of definite integral to find the area
	between two curves, volume and arc length.

MTS3 B03 CALCULUS OF SINGLE VARIABLE-2

CO1	Explain logarithmic function, exponential function,
	trigonometric function and hyperbolic function.
CO2	Apply L'Hopital Rule to solve indeterminate forms.
CO3	Illustrate convergence and divergence in sequences and
	series.
CO4	Illustrate Taylor and Maclaurin series.
CO5	Explain the calculus of parametric equations.
CO6	Understand differentiation and integration of vector valued
	functions.

MTS4 B04 LINEAR ALGEBRA

CO1	Solve system of linear equations using various methods.
CO2	Illustrate vector space, sub space, linear independence, linear
	dependence and basis.
CO3	Understand dimension theorem for matrices.
CO4	Explain basic matrix transformations.
CO5	Demonstrate diagonalization.
CO6	Apply Gram-schmidt orthonormalization process.

B.Sc. Mathematics MTS5B05THEORYOFEQUATIONSANDABSTRACTALGEBRA

CO1	Understand division of polynomials, remainder theorem,
	Taylor's formula and limits of roots.
CO2	Solve polynomial equations.
CO3	Illustrate groups and sub groups.
CO4	Demonstrate isomorphism and homomorphism of groups.
CO5	Illustrate commutative rings.

MTS5 B06 BASIC ANALYSIS

- CO1 Understand various properties of \mathbb{R} .
- CO2 | Explain sequences of real numbers and related theorems.
- CO3 | Analyze basic topology on \mathbb{R} .
- CO4 Understand complex numbers and complex functions.
- CO5 Illustrate limit and continuity of complex valued functions.

MTS5 B07 NUMERICAL ANALYSIS

CO1	Find out the approximate numerical solutions of algebraic
	and transcendental equations with desired accuracy using
	Bisection method, Fixed point iteration and Newton's
	method.
CO2	Explain interpolation and Lagrange polynomial.
CO3	Solve problems using Newton's forward difference,
	Newton'sbackward difference, centred differences and
	Stirling's formula.
CO4	Apply numerical differentiation and integration.
CO5	Solve ordinary differential equations using numerical
	methods.

MTS5 B08 LINEAR PROGRAMMING

CO1	Solve linear programming problems geometrically.
CO2	Solve LP problems more effectively using Simplex
	algorithm.
CO3	Explain duality theory.
CO4	Illustrate game theory.
CO5	Solve transportation and assignment problems.

B.Sc. Mathematics MTS5 B09 INTRODUCTION TO GEOMETRY

CO1	Understand basic facts about conics.
CO2	Classify conics.
CO3	Explain Kleinian view of Euclidean geometry.
CO4	Analyze affine transformations.
CO5	Understand the fundamental theorem of affine geometry.
CO6	Interpret various perspectives of projective geometry and projective
	transformations.

MTS6 B10 REAL ANALYSIS

CO1	Understand fundamental properties of continuous
	functionson intervals.
CO2	Distinguish continuity and uniform continuity.
CO3	Develop the notion of Riemann integrability of a
	function using Riemann sums.
CO4	Understand basic and fundamental results of integration
	theory.
CO5	Illustrate convergence and divergence of sequences and series
	of functions.
CO6	Explain the notion of improper integrals and their
	convergence.

MTS6 B11 COMPLEX ANALYSIS

CO1	Distinguish between differentiability and analyticity of complex functions.
CO2	Understand necessary and sufficient condition for checking analyticity.
CO3	Relate harmonic functions and analytic functions.
CO4	Analyze elementary complex functions.
CO5	Understand complex integral, its properties and evaluation.
CO6	Explain afewfundamentalresults oncontourintegration
	theory such as Cauchy's theorem, Cauchy-Goursat theorem
	and their applications.
CO7	Apply Cauchy's integral formula and derive Liouville's
	theorem, Morera's theorem and power series expansion of an
	analytic function.
CO8	Apply Residue theorem to evaluate contour integrals.

MTS6 B12 CALCULUS OF MULTI VARIABLE

CO1	Understand multivariable functions and their representations.
CO2	Understand the idea of limit and continuity for functions of
	several variables.
CO3	Apply the notion of partial derivatives to evaluate directional
	derivatives.
CO4	Find extreme values of a multivariable function using second
	derivative test and Lagrange multiplier method.
CO5	Applypolar, spherical and cylindrical coordinate systems
	intheevaluation of double and triple integrals.
CO6	Apply double and triple integral in the problem of finding
	out surface area ,mass of lamina, volume, centre of mass and
	soon.
CO7	Understand the notion of a vector field, the idea of curl and
	divergence of a vector field, their evaluation and
	interpretation.
CO8	Illustrate Green's theorem, Gauss's theoremand Stokes'
	theoremof multivariable calculus and their use in several
	areas and directions.

MTS6 B13 DIFFERENTIAL EQUATIONS

CO1	Identify some areas where the modelling process results in a
	differential equation.
CO2	Solve linear, variable separable and exact DEs and analyse their
	solutions.
CO3	Distinguish between linear and non linear DEs and
	conditions for occurrence of their solutions.
CO4	Illustrate the theory and method for solving a second order
	linear homogeneous and nonhomogeneous equation with
	constant coefficients.
CO5	Find out a series solution for homogeneous equations with
	variable coefficients near ordinary points.
CO6	Solve differential equations using Laplace method.
CO7	Solve partial differential equations using the method of
	separation of Variables

MTS6 B14 (E01) GRAPH THEORY

- CO1 Define graphs, sub graphs and degrees.
- CO2 | Analyze properties of graphs.
- CO3 | Explain trees and their properties.
- CO4 Distinguish between Eulerian and Hamiltonian graphs.
- CO5 Illustrate planar graphs.

B.Sc. Mathematics MTS6 B14 (E02) TOPOLOGY OF METRIC SPACES

- CO1 Illustrate metric spaces.
- CO2 Explain various related terminologies.
- CO3 Understand convergence for sequences.
- CO4 Explain Continuity and connectedness in metric space.

MTS6B14(E03) MATHEMATICAL PROGRAMMING WITH PYTHON AND LATEX

CO1	Understand basis of Python programming.
CO2	Apply Python programming in plotting mathematical
	functions.
CO3	Apply Python programming in numerical analysis.
CO4	Understand typesetting using Latex.
CO5	Apply Latex in writing equations.

MTS5 D01 APPLIED CALCULUS

- CO1 Illustrate functions, limit, continuity and differentiability.
- CO2 | Find derivatives of various functions.
- CO3 | Identify monotone functions.
- CO4 | Analyze concavity and points of inflection.
- CO5 Define exponential and logarithmetic functions.
- CO6 | Explain integration and related theorems.

${\bf MTS5D02DISCRETEMATHEMATICSFORBASICANDAPPLIEDSCIENCES}$

CO1	Explain ideas in precise and concise mathematical terms and
	also to make valid arguments using mathematical logic.
CO2	Define semi groups, groups, cyclic groups and permutation
	groups.
CO3	Define Boolean algebra and state its properties.
CO4	Explain Boolean functions and give examples.
CO5	Define graph and tree and give examples.
CO6	Explain planar graphs and Euler's formula.

MTS5 D03 LINEAR MATHEMATICAL MODELS

CO1	Explain the basic concepts of linear functions.
CO2	Solve system of linear equations using various methods.
CO3	Solve linear programming problems geometrically.
CO4	Solve LP problems more effectively using Simplex
	algorithm.
CO5	Explain duality theory.

MTS5 D04 MATHEMATICS FOR DECISION MAKING

- CO1 Define data classification and experimental design.
- CO2 Understand frequency distributions and their graphs.
- CO3 Explain measures of central tendency.
- CO4 Understand basic concepts of probability and counting
- CO5 | Explain discrete probability distributions.
- CO6 | Explain normal and standard normal distributions.

MTS1 C01:MATHEMATICS-1

CO1	Define limit, continuity and differentiability.
CO2	Explain some basic theorems of differential calculus.
CO3	Apply the concepts and theorems in calculus to draw the
	graph of a function.
CO4	Illustrate L'hopital's rule.
CO5	Understand anti derivatives and area under the graph of a
	function.
CO6	Explain some basic theorems of integral calculus.
CO7	Apply the concept of definite integral to find the area
	between two curves and volume.
CO6 CO7	Explain some basic theorems of integral calculus. Apply the concept of definite integral to find the area between two curves and volume.

MTS2 C02:MATHEMATICS-2

CO1	Relate points in polar coordinates.
CO2	Understand parametric curves.
CO3	Find length and area in polar coordinates.
CO4	Illustrate numerical integration.
CO5	Analysis convergence and divergence in series.
CO6	Explain Taylor and Maclaurin series.
CO7	Explain vector space, sub space, linear independence, linear
	dependence and basis.
CO8	Illustrate row space, column space null space and
	diagonalization.

MTS3 C03:MATHEMATICS-3

CO1	Explain vector valued functions, limit, continuity and
	derivatives.
CO2	Illustrate the idea of directional derivative, its evaluation,
	interpretation, and relationship with partial derivatives.
CO3	Understand the notion of a vector field, the idea of curl and
	divergence of a vector field,
	their evaluation and interpretation.
CO4	Apply double in the problem of finding out mass of lamina,
	centre of mass, moment of
	inertia and so on.
CO5	Illustrate Green's theorem of multivariable calculus and its
	their use in several areas and directions.
CO6	Apply the advantage of choosing other coordinate systems
	such as polar, spherical, cylindrical etc. in the evaluation of
	triple
	integrals.
CO7	Distinguish between differentiability and analyticity of a
	complex function.
CO8	Apply Cauchy-Goursat Theorem and Cauchy's Integral
	formula to evaluate contour integrals.

MTS4 C04:MATHEMATICS-4

CO1	Identify a number of areas where the modelling process
	results in a differential equation.
CO2	Solve DEs that are in linear, separable and in exact forms.
CO3	Illustrate the theory and method of solving a second order
	linear homogeneous and non homogeneous equation with
	constant coefficients.
CO4	Understand Laplace transform and Fourier series.
CO5	Solve PDE using variable separable method.