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PREFACE

This book consists of 17 papers which were presented at the National Seminar in

Applied Statistics and Symposium on Stochastic Modelling held during February 4-6, 2020

at St. Thomas College (Autonomous), Thrissur, Kerala as part of centenary celebrations

of the college & 85th birth anniversary of Professor A. M. Mathai. Topics to be covered

in this book are Distribution Theory, Special functions, Multivariate Analysis, Reliability

and Survival Analysis, Classical and Bayesian Inference, Biostatistics and Time Series

and Stochastic Modelling. This conference, comprised of around 44 talks regarding various

areas of applied statistics and stochastic modelling, was attended by about 150 participants.

St. Thomas College, Thrissur is one of the leading academic institutions in the higher

education sector of Kerala since 1919. It has a long and proud tradition of excellence in

training, teaching and research in many academic disciplines of Science, Arts, Commerce

and Humanities.

Professor A. M. Mathai is an Emeritus Professor (Full Professor) of Mathematics and

Statistics, McGill University, Montreal, Canada, Director, Centre for Mathematical and

Statistical Sciences, Kerala, India and Former President of the Indian Mathematical Society

and Chairman of the Kerala State Statistical Commission. Dr A. M. Mathai was honored

by several institutions and national societies in India and thrice by the United Nations. By

2020 he has finished nearly 60 years of his teaching career and nearly 54 years of research

career. He has published over 300 research papers, most of them in SCI journals, and in

37 books he is the sole author or principal co-author. He has edited another 35 books

also, including two for the United Nations. He has over 28,000 citations by 2019 as per

Google counts, possibly the most cited mathematician/statistician in India and one of the

top cited in the world.

The Organizers of NSASSSM-2020 are very much grateful to University Grants Com-

mission (UGC), Science and Engineering Research Board, Department of Science and

Technology (DST) and Mathematical and Statistical Sciences Trust for giving financial

assistance. We gratefully acknowledge the support extended by these agencies for the

successful conduct of the conference.

All the papers submitted for publication in this book were refereed rigorously. The help

offered in this regard by numerous referees is gratefully acknowledged. We honestly hope

that the readers of this book will find the papers to be useful and of interest. We also thank

all the authors for submitting their papers for publication in this book. Special thanks

goes to our Advisory Committee, National Organizing Committee and Local Organizing

Committee for their support and involvement in organising this seminar and for helping

with the final production of this book. Special thanks to research scholars, teaching and
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non-teaching staff, graduate and post graduate students of Department of Statistics and B.

Voc. Data Science, for the excellent cooperation rendered in bringing out this conference.

The editors are not responsible for the correctness and originality of the results in

various papers. The responsibility lies solely with the authors of the respective papers.

Thrissur Nicy Sebastian

25th April 2020 Sajesh T A
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Lectures On Factor Analysis: A New Look

A.M. Mathai
Emeritus Professor of Mathematics and Statistics, McGill University, Canada

Email:directorcms458@gmail.com

Abstract

The topic of Factor Analysis in Multivariate Statistical Analysis is usually a difficult

topic for students to understand, to interpret and to see the significance of the various

procedures and approximations. This article is based on the lectures of the author. In

this article this area is examined through Jacobians of matrix transformations and some

properties of special functions of matrix argument. This approach makes the derivations

easy and to some extend interpretable also. All the factor loadings and error variances are

estimated explicitly and testing of hypothesis is also done under one set of identification

conditions.

AMS Subject Classification: 62H25, 62H12, 62H15.

Key words: Factor analysis, principal components analysis, linear models, estimation and test of

hypotheses.

1. Introduction

The following notations will be used in this article. Small letters x, y, z etc will denote

real scalar variables whether mathematical variables or random variables. Capital letters

X,Y etc will be used for real vector/matrix-variate variables whether square or rectangular

matrix is involved. A tilde will be used for the variables in the complex domain such as

x̃, ỹ, X̃, Ỹ etc. Constant vectors/matrices will be denoted by A,B,C etc. A tilde will not

be used for constant matrices unless the point is to be stressed that the constant matrix

is in the complex domain. In the real case, determinant of a square matrix A will be

denoted by |A| or det(A) and in the complex case the absolute value of the determinant of

A will be denoted as |det(A)|. When matrices are square then their order will be taken as
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p×p unless specified otherwise. When A is of full rank in the complex domain then AA∗ is

Hermitian positive definite where A∗ indicates complex conjugate transpose of A. Also, dX

will indicate the wedge product of all distinct differentials in the matrix X. If X = (xij),

p× q and of distinct real scalar variables xij ’s then dX = ∧pi=1 ∧
q
j=1 dxij . For the complex

matrix X̃ = X1 + iX2, i =
√

(−1), where X1 and X2 are real, then dX̃ = dX1 ∧ dX2.

Factor Analysis was originally developed in connection with mental tests. A score

available in a mental test is contributed by many mental faculties or mental factors. It

is assumed that a certain linear function of these contributions from the various mental

factors is producing the final score. Hence there is a parallel to linear regression models

and analysis of variance or design of experiment models. In order to introduce the topic

of Factor Analysis we will examine a linear regression model and a design of experiment

model first.

Since the primary audience is expected to be students, the material will be written in

the form of a lecture note. Those who are already exposed to the preliminaries may delete

Sections 1 and 2 and go directly to Section 3.

1.1. Linear Models from Different Disciplines

(a) A linear regression model

Let x be a real scalar random variable and let t1, ..., tr be either r fixed numbers or

given values of r random variables. Let the conditional expectation of x, given t1, ..., tr, be

of the form

E[x|t1, ..., tr] = ao + a1t1 + ...+ artr

or the corresponding model be

x = ao + a1t1 + ...+ artr + e

where ao, a1, ..., ar are unknown constants, t1, ..., tr are given values and e is the error

part or the sum total of contributions coming from unknown or uncontrolled factors plus

experimental error. Here x may be inflation index taking a particular year, say 2010, as

the base year. Here t1 may be the change or deviation in the average price per kilogram

of staple vegetable items from the base year 2010, t2 may be the change or deviation in

the average price of the staple item rice per kilogram compared to the base year 2010, t3
may be the change or deviation in the average price of lentils per kilogram compared to

the base year 2010, and so on, and tr may be the change or deviation in the average price

per kilogram of beans compared to the base year 2010. Here the notation tj , j = 1, ..., r is

used to denote the given values as well as the corresponding random variables. Since we

are taking deviations from the base value we may assume, without loss of generality, that

the expected value of tj is zero or E[tj ] = 0, j = 1, ..., r. We may also take the expected
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value of the error term e to be zero or E[e] = 0. Let x1 be the inflation index, x2 be the

calorie intake index per person, x3 be the general health index and so on. In all these cases

the same t1, ..., tr can act as the independent variables in a regression set up. Then in such

a case a multivariate linear regression model will have the following format:

X =



x1

...

xp


 =



µ1

...

µp


+



a11 a12 . . . a1r

...
... . . .

...

ap1 ap2 . . . apr






f1

...

fr


+



e1

...

ep


 . (1)

We may write this model in matrix notation as

X = µ+ Λf + e

where Λ = (λij) is p × r, r ≤ p and of full rank r, e is p × 1 and f is r × 1. In (1),

λij = aij , fj = tj . Then E[X] = µ + ΛE[f ] + E[e] = µ since we have assumed that

E[f ] = O (null), E[e] = O. Then when f and e are uncorrelated then the covariance

matrix in X, denoted by Cov(X) = Σ is the following:

Σ = Cov(X) = E{(X − µ)(X − µ)′} = E{(Λf + e)(Λf + e)′}
= ΛCov(f)Λ′ + Cov(e) +O = ΛΦΛ′ + Ψ

Σ = ΛΦΛ′ + Ψ (2)

where we have denoted the covariance matrices of f and e by Φ > O (positive definite)

and Ψ > O respectively. In the above formulation, f is taken as a real vector random

variable. In a simple linear model usually the covariance matrix of e, namely Ψ, is taken as

σ2I where σ2 > 0 is a real scalar quantity and I is the identity matrix. In a more general

model we take Ψ as a diagonal matrix with positive diagonal elements or we assume that

the ej ’s are non-correlated and the variances of the ej ’s need not be equal. In (2) we will

take Ψ to be a diagonal matrix with positive diagonal elements.

(b) A Design of Experiment model

Consider a completely randomized experiment where one set of treatment is tried. Here

the experimental plots are assumed to be fully homogeneous with respect to all known

factors of variation which may contribute towards the final observation. The observation

may be the yield of a particular variety of corn from an experimental plot. Let the set of

treatments be a set of r different fertilizers F1, ..., Fr where the effects of these fertilizers

are denoted by α1, ..., αr. If no fertilizer is applied the yield from a test plot need not be

zero. Let µ1 be a general effect when F1 is applied so that we may take α1 as deviation

from the general effect µ1 due to F1. Let e1 be the sum total contributions coming from all

unknown or uncontrolled factors plus experimental error, if any, when F1 is applied. Then

a simple linear one-way classification model for F1 is

x1 = µ1 + α1 + e1
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where x1 is the yield from the test plot where F1 is applied. Then corresponding to F1, ..., Fr
we have the following:

x1 = µ1 + α1 + e1

... =
...

xp = µp + αp + ep

or X = µ+ Λf + e (3)

where

X =



x1

...

xp


 , e =



e1

...

ep


 , f =



α1

...

αp


 ,Λ =




1 0 . . . 0
...

... . . .
...

0 0 . . . 1


 .

Here the elements of Λ are decided by the design itself. If the vector f is fixed then we

call the model in (3) as the fixed effect model and if f is assumed to be random then it

is called the random effect model. With one observation per cell, as stated in (3), we will

not be able to estimate the parameters and test hypotheses. We will have to replicate the

experiment. Then in the j-th replicate the observation vector will be

Xj =



x1j

...

xpj


 , j = 1, ..., n; Σ,Φ,Ψ

remaining the same for each replicate for the random effect model. In the regression model

in (1) also the j-th replication or repetition vector will be Xj , same format as above, with

Σ,Φ,Ψ there remaining the same for each sample.

We will consider a general linear model of the type in (1) and (3) and do a complete

analysis in the sense of checking for the existence and uniqueness of such a model, esti-

mation of the parameters and testing of various types of hypotheses. This will be called

Factor Analysis.

2. A General Linear Model for Factor Analysis

Consider the following general linear model:

X = µ+ Λf + e (4)
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where

X =



x1

...

xp


 , µ =



µ1

...

µp


 , e =



e1

...

ep


 , f =



f1

...

fr


 , r ≤ p

Λ =




λ11 λ12 . . . λ1r

λ21 λ22 . . . λ2r

...
... . . .

...

λp1 λp2 . . . λpr




with µj ’s, λij ’s, fj ’s being real scalar parameters, xj , j = 1, ..., p as real scalar quantities, Λ

is p×r, r ≤ p and of full rank r. When we talk about expected values, variances, covariance

etc then X, f, e are assumed to be random quantities and when we talk about estimates

then X represents a vector of observations. This convention will be used throughout

the discussion in this lecture so that multiplicity of symbols for the variables and the

corresponding observations can be avoided.

Geometrically speaking, the r columns of Λ are linearly independent and these r

columns can determine a r-dimensional subspace in the p-dimensional Euclidean space.

In this case the r × 1 vector f is a point in this r-subspace and this subspace is usually

called the factor space. Then if the p× r matrix Λ is multiplied on the right by a matrix

then this will correspond to taking a new set of coordinate axes for the factor space.

Factor Analysis is a subject dealing with identification or unique determination of a

model of the type in (4), estimation of parameters and testing of various types of hypotheses

in (4). The subject matter was originally developed in connection with mental tests.

Suppose that one test or a battery of tests is administered to an individual to evaluate the

individual’s reading ability or computational ability or mathematical ability or language

ability etc, then the test will result in a test score. There will be a component here

representing the expected score. If the test is administered among students in the 10th

grade of a school then the grand average of such test scores among all 10th graders across

the nation may be taken as the expected score. Then there will be contributions coming

from various mental factors, or certain mental faculties or a combination of several mental

faculties. All such factors may be contributing towards the observed test score. If f1, ..., fr
are the contributions coming from r such mental factors then certain linear functions of

these contributions will be the final quantity entering into the observed test score when we

assume a linear model. If x1 is the test score then it may be taken as a linear model in the

following form:

x1 = µ1 + λ11f1 + λ12f2 + ...+ λ1rfr + e1

where λ11, ..., λ1r are the coefficients for f1, ..., fr, where f1, ..., fr are contributions from

r factors toward x1 and these factors may be called the main mental factors and the
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coefficients λ11, ..., λ1r may be called the factor loadings for the main factors. Here µ1 is

the general expected values and e1 is the error part or the sum total contributions coming

from all unknown factors plus experimental error, if any. Note that the contributions

f1, ..., fr coming from main mental factors can vary from individual to individual and

hence it is appropriate to treat f1, ..., fr as random variables rather than as fixed unknown

quantities. These f1, ..., fr are not observable as in the case of design model in (3) whereas

in the regression type model in (1) they may be given values of observable variables called

the independent variables. Analysis of the above model may be done treating f1, ..., fr as

fixed quantities or as random variables. If they are treated as random variables then we

can assume some joint distribution over f1, ..., fr. Usually a joint normality is assumed

for f1, ..., fr. Since f1, ..., fr are deviations from the general effect µ1 due to various main

mental faculties we may take, without loss of generality, that the expected value as null or

E[f ] = O (null), and we will denote the covariance matrix in f as Φ or Cov(f) = Φ > O

(real positive definite). Note that the error part ej is always a random variable. Let

x1, ..., xp be the test scores on p individuals then we have the error vector e′ = (e1, ..., ep).

Without loss of generality we may take the expected value here as null or E[e] = O (null).

For a very simple situation we may assume the covariance matrix in e as Cov(e) = σ2I

where σ2 > 0 is a real positive scalar quantity and I is the identity matrix. For a slightly

more general situation we may assume Cov(e) = Ψ as a real positive definite diagonal

matrix or a diagonal matrix with real positive diagonal elements. In the most general case

we may take Ψ as a real positive definite matrix. In our model in (4), we will assume that Ψ

is diagonal with positive diagonal elements. We will assume that f and e are uncorrelated.

If Σ is the covariance matrix of X then we have the following:

Σ = E[(X − µ)(X − µ)′] = E[(Λf + e)(Λf + e)′]

= ΛE(ff ′)Λ′ + E(ee′) + 0 = ΛΦΛ′ + Ψ

Σ = ΛΦΛ′ + Ψ. (5)

We will assume Σ > O (real positive definite) and hence ΛΦΛ′ + Ψ > O.

2.1. Identification problem

Is the model in (4) a unique model or can it represent different situations or can it be

quite arbitrary? Does the model (4), as stated there, make sense as a model? Let A be

any r× r nonsingular matrix. Let Af = f∗ and ΛA−1 = Λ∗. Then Λ∗f∗ = ΛA−1Af = Λf .

In other words,

X = µ+ Λf + e = µ+ Λ∗f∗ + e. (6)

Therefore the model in (4) is not identified or not uniquely determined.

Identification problem can also be stated as follows: Given the real positive definite

p × p matrix Σ > O with p(p + 1)/2 distinct elements, can it be uniquely represented as
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ΛΦΛ′+Ψ where Λ has pr distinct elements, Φ > O has r(r+1)/2 distinct elements, Ψ = a

diagonal matrix has p distinct elements? The answer is no as seen in (6). Note that a r×r
arbitrary matrix A represents r2 distinct elements. From (6) we have seen that we can

impose r2 conditions on the parameters in Λ,Φ,Ψ. Also we can modify the question. Can

the p(p + 1)/2 distinct elements in Σ plus the r2 elements in A (r2 conditions) uniquely

determine all elements in Λ,Ψ,Φ? Let us see how many elements are there in total. Λ,Ψ,Φ,

have a total of pr + p + r(r + 1)/2 elements and A and Σ have a total of r2 + p(p + 1)/2

elements. Hence the difference, denoted by δ, is the following:

δ =
p(p+ 1)

2
+ r2 − [pr +

r(r + 1)

2
+ p] =

1

2
[(p− r)2 − (p+ r)]. (7)

Note that the right side in (5) is not a linear function of Λ,Φ, and Ψ. Hence if δ > 0 then

we cannot guarantee but we can anticipate existence and uniqueness, if δ = 0 we can hope

for existence and uniqueness and if δ < 0 then we can expect existence but possibly not

uniqueness. From (5) note that

Σ = Ψ + ΛΦΛ′ ⇒ Σ−Ψ = ΛΦΛ′

where ΛΦΛ′ is positive semi-definite of rank r since Λ is p × r, r ≤ p and of full rank r

and Φ > O (positive definite). Then the existence question can also be stated as follows:

Given a p×p real positive definite matrix Σ > O, can we find a Ψ = diagonal with positive

diagonal elements such that Σ − Ψ is real positive semi-definite of rank r? If a set of

parameters exist and if the model is uniquely determined then we say that the model is

identified.

If we assume Φ = I then this will impose r(r+1)/2 conditions. But r2 = r(r+1)
2 + r(r−1)

2 .

Hence we can impose r(r−1)/2 conditions more after imposing the condition Φ = I. Note

that for Φ = I, Λ∗ΦΛ′∗ = Λ∗λ′∗ = ΛA−1A′−1Λ′ and if this is equal to ΛΛ′ under Φ = I

then this means (A′A)−1 = I or A′A = I or A is an orthonormal matrix. Under the

condition Φ = I the arbitrary r × r matrix A becomes an orthonormal matrix. In this

case the transformation Y = ΛA is an orthonormal transformation or a rotation of the

coordinate axes. The following r × r symmetric matrix of r(r + 1)/2 distinct elements

∆ = Λ′Ψ−1Λ (8)

is needed when we do estimation and tests of hypotheses and hence we can impose

r(r − 1)/2 conditions by requiring ∆ to be diagonal with distinct diagonal elements,

∆ = diag(δ1, ..., δr), δj > 0, j = 1, ..., r. This imposes r(r+1)
2 − r = r(r−1)

2 conditions.

Hence for identification of the model or for the unique determination of all the parameters

in Λ,Φ,Ψ we can impose the conditions Φ = I and that ∆ = Λ′Ψ−1Λ is diagonal with pos-

itive diagonal elements. These two conditions will provide r(r+1)
2 + r(r−1)

2 = r2 restrictions

on the model and the model will be identified.
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When Φ = I the main factors are orthogonal. If Φ = a diagonal matrix (including

identity matrix) the covariances are zeros and it is an orthogonal situation and in this

case we say that the main factors are orthogonal. If Φ is not diagonal (including identity

matrix) then we say that the main factors are oblique.

One can also impose r(r − 1)/2 conditions on the p × r matrix Λ. Consider the first

r × r block or the leading r × r sub-matrix or the upper r × r block in the p × r matrix,

call it B. Impose the condition that this r × r block B is lower triangular. Then this will

result in r2 − r(r+1)
2 = r(r−1)

2 conditions. Hence Φ = I and the condition that this leading

r × r block B is lower triangular will guarantee r2 restrictions and then the model will be

identified. One can also take a preselected r× r matrix B1 and then impose the condition

that B1B is lower triangular. This will also produce r(r−1)
2 conditions. Hence Φ = I and

B1B is lower triangular will complete the identification of the model.

When we put conditions on Φ and Ψ we are requiring the unknown covariance matrices

to be of certain formats. Such conditions are justified. But can we put conditions on Λ, the

factor loadings? If we say that the fist r×r block B in the p×r matrix Λ as lower triangular

then we are saying that λ12 = 0 = λ13 = ... = λ1r or that f2, ..., fr do not enter into

the model for x1, X ′ = (x1, x2, ..., xp). Such restrictions are justified if we can design the

experiment in such a way that x1 depends on f1 alone and not on f2, ..., fr. In psychological

tests it is possible to design the test in such a way that there are contributions from certain

main factors only. Hence a triangular format that in x1 there are no contributions from

f2, ..., fr or the corresponding factor loadings λ12, ..., λ1r are zeros, or, in general, in xi
there are no contributions from fi+1, ..., fr, or the factor loading λi i+1, ..., λir are zeros for

i = 1, ..., r−1 is a feasible proposition and hence such a condition is justified. Suppose that

the first r tests are designed in such a way that xi has only contributions from f1, ..., fi
and from no other factor or xi = µi + λi1f1 + ... + λiifi + ei, i = 1, ..., r, this is also a

feasible proposition. We can also measure the contribution from fi in λii units or we can

take λii = 1. Then by taking B = Ir we can impose r2 conditions without requiring

Φ = I. This means that the first r tests are specifically designed so that x1 has one unit

contribution from f1 only, x2 has one unit contribution from f2 only etc and xr has one

unit contribution from fr only. If B is taken as diagonal then there are factor loadings

λ11, λ22, ..., λrr respectively but xi has contribution from fi only for i = 1, ..., r. Hence the

following are some model identification conditions:

(1): Φ = I and Λ′Ψ−1Λ is diagonal with distinct diagonal elements;

(2): Φ = I and the leading r × r sub-matrix B in the p× r matrix Λ is triangular;

(3): Φ = I and B1B is lower triangular where B1 is a preselected matrix;

(4): The leading r × r sub-matrix B in the p× r matrix Λ is an identity matrix.

Observe that when r = p then the condition (4) above will correspond to the design model
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considered in (3).

2.2. Scaling or units of measurements

Any analysis based on a covariance matrix Σ has the basic defect that the covariances

depend on the units of measurements of the individual variables. If the units are changed

then the covariances change. If yi and yj are two real scalar random variables with variances

σii and σjj and covariance between them σij then a way of getting rid of the effect of

scaling or changes in units of measurements is to consider the variables zi = yi/
√
σii and

zj = yj/
√
σjj so that Cov(zi, zj) = rij = correlation between yi and yj and the correlation

is free of the units of measurements. Let Y ′ = (y1, ..., yp) and let D = diag( 1√
σ11
, ..., 1√

σpp
)

then consider Z = DY . We note that Cov(Y ) = Σ ⇒ Cov(Z) = DΣD = R = the

correlation matrix in Y .

In psychological testing situation or in the model in (4), when a test score xj is mul-

tiplied by a scalar quantity cj then the factor loadings λj1, ..., λjr are multiplied by cj ,

the error ej is multiplied by cj and the general effect µj is multiplied by cj or cjxj =

cjµj + cj(λj1f1 + ... + λjrfr) + cjej . Let Cov(xi, xj) = σij , Cov(X) = Σ, X ′ = (x1, ..., xp)

and let D = diag( 1√
σ11
, ..., 1√

σpp
). Consider the model

DX = Dµ+DΛf +De⇒ DΣD = DΛΦΛ′D +DΨD. (9)

If X∗ = DX,µ∗ = Dµ,Λ∗ = DΛ, e∗ = De then we have the following model and the

resulting covariance matrix:

X∗ = µ∗ + Λ∗f + e∗ ⇒ Σ∗ = Cov(X∗) = Λ∗Cov(f)Λ′∗ + Ψ∗

⇒ DΣD = DΛΦΛ′D +DΨD

⇒ R = Λ∗ΦΛ′∗ + Ψ∗ (10)

where R = (rij) is the correlation matrix in X. One interesting point to be noted is that

the identification condition Φ = I and Λ′∗Ψ∗−1Λ∗ = diagonal becomes the following: Φ = I

and Λ′∗Ψ∗−1Λ∗ = Λ′DD−1Ψ−1D−1DΛ = Λ′Ψ−1Λ = diagonal or Λ′Ψ−1Λ is invariant under

scaling transformation on the model or under X∗ = DX,Ψ∗ = DΨD.

3. Maximum Likelihood Estimators for the Parameters

From the model X = µ+ Λf + e in (4) when we say we have a simple random sample

of size n the meaning is that we are considering independently and identically distributed
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(iid) Xj , j = 1, ..., n where

Xj = µ+ Λf + ej , j = 1, ..., n,Xj =




x1j

x2j

...

xpj



, e =




e1j

e2j

...

epj




(11)

and iid. Let Xj and ej be independently normally distributed, that is ej ∼ Np(O,Ψ) and

Xj ∼ Np(µ,Σ),Σ = ΛΦΛ′ + Ψ where Φ > O,Ψ > O,Σ > O where Ψ is diagonal with

positive diagonal elements. Then the likelihood function is the following:

L =
n∏

j=1

1

(2π)
p
2 |Σ| 12

e−
1
2

(Xj−µ)′Σ−1(Xj−µ)

=
1

(2π)
np
2 |Σ|n2

e−
1
2

∑n
j=1(Xj−µ)′Σ−1(Xj−µ). (12)

The sample matrix is denoted by the bold-faced X = (X1, ..., Xn). Let J be the n × 1

vector of unities, J ′ = (1, 1, ..., 1). Then

X = (X1, ..., Xn) =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
... . . .

...

xp1 xp2 . . . xpn




⇒ 1

n
XJ =




1
n

∑n
j=1(x1j)

...
1
n(
∑n

j=1 xpj)


 =




x̄1

x̄2

...

x̄p




= X̄

where X̄ is the sample average vector or the sample mean vector. Let the bold-faced X̄ be

the p× n matrix X̄ = (X̄, X̄, ..., X̄). Then

(X− X̄)(X− X̄)′ = S = (sij), sij =
n∑

k=1

(xik − x̄i)(xjk − x̄j) (13)

where S is the sample sum of products matrix or the “corrected” sample sum of products

matrix. Note that

X̄ =
1

n
XJ

⇒ X̄ = (X̄, ..., X̄) = X(
1

n
JJ ′)

⇒ X− X̄ = X(I − 1

n
JJ ′).
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Then

S = X(I − 1

n
JJ ′)(I − 1

n
JJ ′)′X′ = X(I − 1

n
JJ ′)X′. (14)

Since (Xj − µ)′Σ−1(Xj − µ) is a real scalar quantity we have the following:

n∑

j=1

(Xj − µ)′Σ−1(Xj − µ) =
n∑

j=1

tr(Xj − µ)′Σ−1(Xj − µ)

=
n∑

j=1

tr[Σ−1(Xj − µ)(Xj − µ)′]

= tr[Σ−1
n∑

j=1

(Xj − X̄ + X̄ − µ)(Xj − X̄ + X̄ − µ)′]

= tr[Σ−1
n∑

j=1

(Xj − X̄)(Xj − X̄)′]

+ ntr[Σ−1(X̄ − µ)(X̄ − µ)′]

= tr(Σ−1S) + n(X̄ − µ)′Σ−1(X̄ − µ). (15)

Hence

L = (2π)−
np
2 |Σ|−n

2 e−
1
2
{tr(Σ−1S)+n(X̄−µ)′Σ−1(X̄−µ)}. (16)

Differentiating (16) with respect to µ and equating to a null vector and then solving we

have the estimator for µ, denoted by µ̂, as µ̂ = X̄. Then lnL at µ = X̄ is the following:

lnL = −np
2

ln(2π)− n

2
ln |Σ| − 1

2
tr(Σ−1S)

= −np
2

ln(2π)− n

2
ln |ΛΦΛ′ + Ψ| − 1

2
tr[(ΛΦΛ′ + Ψ)−1S]. (17)

3.1. Maximum likelihood estimators under an identification condition

One of the conditions for identification of the model is Φ = I and Λ′Ψ−1Λ = a diagonal

matrix with positive diagonal elements. We will examine the maximum likelihood esti-

mators (MLE)/maximum likelihood estimates (MLE) under this identification condition.

Then from (17)

lnL = −np
2

ln(2π)− n

2
ln |ΛΛ′ + Ψ| − 1

2
tr[(ΛΛ′ + Ψ)−1S]. (18)

By opening up the following determinant in two different ways we have the following

relationship: ∣∣∣∣∣
Ψ −Λ

Λ′ Ir

∣∣∣∣∣ = |Ψ| |I + Λ′Ψ−1Λ| = |Ψ + ΛΛ′|. (19)
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Hence

ln |ΛΛ′ + Ψ| = ln |Ψ|+ ln |I + Λ′Ψ−1Λ|

=

p∑

j=1

lnψjj +
r∑

j=1

ln(1 + δj),

∆ = Λ′Ψ−1Λ = diag(δ1, δ2, ..., δr) (20)

where ψjj , j = 1, ..., p are the diagonal elements in the diagonal matrix Ψ, and the iden-

tification condition is that Φ = I and Λ′Ψ−1Λ = ∆ = diag(δ1, ..., δr). Hence if we can

write tr(Σ−1S) = tr[(ΛΛ′ + Ψ)−1S] in terms of ψjj , j = 1, ..., p and δj , j = 1, ..., r then the

likelihood equation can be evaluated directly from (18) and (20) and the estimators can

be obtained. In this connection we can obtain the following result:

Theorem 3.1. For ΛΛ′ + Ψ nonsingular, which here means real positive definite, the

inverse is given by

(ΛΛ′ + Ψ)−1 = Ψ−1 −Ψ−1Λ(∆ + I)−1ΛΨ−1 (21)

where the ∆ is given in (20).

It is easily verified that pre and post multiplications of Ψ−1 − Ψ−1Λ(∆ + I)−1Λ′Ψ−1

by ΛΛ′ + Ψ give the identity matrix Ip.

3.2. Simplifications of |Σ| and tr(Σ−1S)

From (20)

|Σ| = |ΛΛ′ + Ψ| = |Ψ| |Λ′Ψ−1Λ + I|

= |Ψ| |I + ∆| = {
p∏

j=1

ψjj}{
r∏

j=1

(1 + δj)}.

Then observe the following: In Λ(∆ + I)−1 = Λdiag( 1
1+δ1

, ..., 1
1+δr

) the j-th column of Λ is

multiplied by 1
1+δj

, j = 1, ..., r and

Λ(∆ + I)−1Λ′ =
r∑

j=1

1

1 + δj
ΛjΛ

′
j
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where Λj is the j-th column of Λ and the δj ’s are given in (20). Then

ln |Σ| =
p∑

j=1

lnψjj +

r∑

j=1

ln(1 + δj) (22)

tr(Σ−1S) = tr[(ΛΛ′ + Ψ)−1S] = tr[(Ψ−1S)]− tr[Ψ−1Λ(∆ + I)−1Λ′Ψ−1S]

= tr(Ψ−1S)−
r∑

j=1

1

1 + δj
tr(ΛjΛ

′
j(Ψ

−1SΨ−1)

= tr(Ψ−1S)−
r∑

j=1

1

1 + δj
tr(Λ′j(Ψ

−1SΨ−1)Λj)

= tr(Ψ−1S)−
r∑

j=1

1

1 + δj
Λ′j(Ψ

−1SΨ−1)Λj (23)

where Λj is the j-th column of Λ and by using the property tr(AB) = tr(BA) and then

observing that Λ′j(Ψ
−1SΨ−1)Λj is a quadratic form.

3.3. Special case Ψ = σ2Ip

Let Ψ = σ2I where σ2 is a real scalar. Then Ψ−1 = σ−2Ip = θIp where θ = σ−2. Then

the log likelihood function reduces to the following:

lnL = −np
2

ln(2π) +
np

2
ln θ − n

2

r∑

j=1

ln(1 + δj)

− θ

2
tr(S) +

θ2

2

r∑

j=1

1

1 + δj
Λ′jSΛj

where 1 + δj = 1 + θΛ′jΛj with Λj being the j-th column of Λ. Consider the equation

∂

∂θ
lnL = 0⇒

np

θ
− n

r∑

j=1

Λ′jΛj
1 + θΛ′jΛj

− tr(S)

+ 2θ
r∑

j=1

Λ′jSΛj

1 + θΛ′jΛj
− θ2

r∑

j=1

Λ′jΛj
(1 + θΛ′jΛj)

2
Λ′jSΛj = 0. (24)

For a specific j, consider

∂

∂Λj
lnL = O ⇒

−n
2

2θΛj
1 + θΛ′jΛj

+
θ2

2

2SΛj
1 + θΛ′jΛj

− θ2

2

Λ′jSΛj

[1 + θΛ′jΛj ]
2
(2θ)Λj = O. (25)
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Cancel one θ and multiply on the left by [1 + θΛ′jΛj ]
2. Then

−n(1 + θΛ′jΛj)Λj + θ[(1 + θΛ′jΛj)SΛj ]− θ2(Λ′jSΛj)Λj = O. (26)

Pre-multiply (26) by Λ′j to obtain the following:

−n(1 + θΛ′jΛj)Λ
′
jΛj + θ[(1 + θΛ′jΛj)Λ

′
jSΛj − θ2(Λ′jSΛj)Λ

′
jΛj = 0 (27)

This simplifies to the following:

θ[Λ′jSΛj − n(Λ′jΛj)
2] = nΛ′jΛj (28)

which gives, for Λ′jSΛj 6= n(Λ′jΛj)
2,

θ =
nΛ′jΛj

Λ′jSΛj − n(Λ′jΛj)
2
, j = 1, ..., r. (29)

Substituting this θ value from (29) to (26) we have the following, observing that

1 + θΛ′jΛj =
Λ′jSΛj

Λ′jSΛj − n(Λ′jΛj)
2
.

−n
Λ′jSΛj

Λ′jSΛj − n(Λ′jΛj)
2
Λj +

n(Λ′jΛj)

Λ′jSΛj − n(Λ′jΛj)
2
[

Λ′jSΛj

Λ′jSΛj − n(Λ′jΛj)
2
]SΛj

−
(nΛ′jΛj)

2

[Λ′jSΛj − n(Λ′jΛj)
2]2

(Λ′jSΛj)Λj = O.

This simplifies to the following:

−n[Λ′jSΛj − n(Λ′jΛj)
2]Λj + n(Λ′jΛj)SΛj − n2(Λ′jΛj)

2Λj = O

which gives [
S −

Λ′jSΛj

Λ′jΛj
I

]
Λj = O ⇒

∣∣∣∣∣S −
Λ′jSΛj

Λ′jΛj
I

∣∣∣∣∣ = 0. (30)

This means that
Λ′jSΛj

Λ′jΛj
is an eigenvalue of S and Λj is an eigenvector of S. There are p

eigenvalues and the corresponding p eigenvectors for S. Note that for Λ̂j as a column of Λ̂

there are only r of them but Λ̂j as an eigenvector of S there are p ≥ r of them. If ηj is an

eigenvalue of S then

SΛ̂j = ηjΛ̂j ⇒ ηj =
Λ̂′jSΛ̂j

Λ̂′jΛ̂j
.
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Take the largest r eigenvalues of S. Compute the corresponding eigenvectors Λ̂j , j = 1, ..., r.

Then these give the estimates of the factor loadings. Then the sum of the eigenvalues is

the trace of S and hence we have the following result:

Theorem 3.2. The sum of all eigenvalues of S from equation (30), including the estimates

of the r factor loadings Λ̂j’s is given by

p∑

j=1

Λ̂′jSΛ̂j

Λ̂′jΛ̂j
= tr(S). (31)

Hence, compute the eigenvalues and the corresponding eigenvectors of the sample sum

of products matrix S. The estimates for the factor loadings, denoted by Λ̂j , are available

from the eigenvectors Λ̂j ’s of S. Take the first r largest eigenvalues of S and then compute

the corresponding eigenvectors to obtain estimates for all the factor loadings. Then the

procedure is also connected to the Principal Components Analysis. The estimates of the

variances of the principal components will be Λ̂′jSΛ̂j/Λ̂
′
jΛ̂j for j = 1, ..., r.

Verification

Does the θ value in (29) satisfy the likelihood equation (24)? Since θ is estimated

through Λj for each j = 1, ..., r we may replace θ in (24) as θj and insert inside the

summation symbol. Then equation (24) will be the following:

n
∑

j

1

θj
− n

∑

j

Λ′jΛj
1 + θjΛ′jΛj

− tr(S)

+ 2
∑

j

θj
Λ′jSΛj

1 + θjΛ′jΛj
−
∑

j

θ2
j

Λ′jΛj(Λ
′
jSΛj)

(1 + θjΛ′jΛj)
2

= 0. (32)

Now, substituting the value of θj from (29) into (24), the left side of (24) reduces to the

following:

n
∑

j

[Λ′jSΛj − n(Λ′jΛj)
2]

nΛ′jΛj
− n

∑

j

Λ′jΛj
Λ′jSΛj

[Λ′jSΛj − n(Λ′jΛj)
2]− tr(S)

+ 2
∑

j

nΛ′jΛj −
∑

j

Λ′jΛj
ΛjSΛj

(nΛ′jΛj)
2

=
∑

j

Λ′jSΛj

Λ′jΛj
− tr(S) = 0

because of Theorem 3.2. Hence equation (32) holds for the θ value from (29) and Λj value

from (26).
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Since the basic estimating equation for θ̂ is coming from (28) as

θ[Λ′jSΛj − n(Λ′jΛj)
2] = nΛ′jΛj

we may sum up over j on both sides and then we have the combined estimate for θ as

follows:

θ̂ =
n
∑r

j=1 Λ̂′jΛ̂j∑r
j=1[Λ̂′jSΛ̂j − n(Λ̂′jΛ̂j)

2]
=

1

σ̂2
(33)

or the estimate of σ2 is the reciprocal of the estimate of θ.

Maximum value of the exponent

We have the estimate θ̂ of θ coming from (29) at the estimated value Λ̂j of Λj for

each j. This Λ̂j is an eigenvector of S coming from (30). The exponent of the likelihood

function is −1
2tr(Σ−1S) and our Σ = ΛΦΛ′ + Ψ and our identification conditions are

Φ = Ip and Λ′Ψ−1Λ = a diagonal matrix with positive diagonal elements. Under these

conditions and for the special case Ψ = σ2Ip, σ
−2 = θ we have seen that the exponent

in the log-likelihood function reduces to −1
2θtr(S) + 1

2θ
2
∑r

j=1

Λ′jSΛj

1+θΛ′jΛj
. Now, consider

θtr(S)−∑r
j=1 θ

2 Λ′jSΛj

1+θΛ′jΛj
= δ say . Since an estimate of θ is available from each j we may

replace θ by θj whenever it is convenient. Then

δ = θtr(S)− θ
r∑

j=1

θj
Λ′jSΛj

1 + θΛ′jΛj
.

Substituting an expression for 1 + θΛ′jΛj from (29) we have the following:

∑

j

θj
Λ′jSΛj

1 + θΛ′jΛj
=
∑

j

nΛ′jΛj and δ = θ[tr(S)− n
∑

j

Λ′jΛj ].

From Theorem 3.2, sum of the eigenvalues of S is
∑

j

Λ′jSΛj

Λ′jΛj
and substituting this we have

δ = θ[
∑

j

Λ′jSΛj

Λ′jΛj
− n

∑

j

Λ′jΛj ] = θ[
∑

j

(
Λ′jSΛj − n(Λ′jΛj)

2

Λ′jΛj
)]

= θ
∑

j

n

θ
= n

∑

j

1 = np

which establishes the result that the exponential part simplifies to e−
np
2 . Thus, the esti-

mates coming from (29) and (30) for θ and Λj , j = 1, ..., r maximize the likelihood function.
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4. General case

Let us consider the original parameters Λj and Θ. Then 1 + δj = 1 + Λ′jΘ
2Λj ,Ψ

−1 =

Θ2,Ψ−
1
2 = Θ,Θ = diag(θ1, ..., θp). Then

lnL = −np
2

ln(2π) + n

p∑

j=1

ln θj −
n

2

r∑

j=1

ln(1 + δj)

− 1

2
tr(Θ2S) +

1

2

r∑

j=1

1

1 + δj
Λ′jΘ

2SΘ2Λj .

Differentiating lnL with respect to Λj , for a specific j, and equating to a null vector we

have the following:

−n
2

2Θ2

1 + δj
Λj +

1

2

2Θ2SΘ2

1 + δj
Λj −

1

2

2Θ2(Λ′jΘ
2SΘ2Λj)

(1 + δj)2
Λj = O. (34)

Premultiply (34) by Λ′j and then sum up over j to obtain

−n
r∑

j=1

Λ′jΘ
2Λj

1 + δj
+

r∑

j=1

Λ′jΘ
2SΘ2Λj

1 + δj
−

r∑

j=1

Λ′jΘ
2Λj

(1 + δj)2
(Λ′jΘ

2SΘ2Λj) = 0. (35)

Now, consider the derivative of lnL with respect to a specific θj equated to zero. For

constructing this equation, observe the following results:

θj
∂

∂θj
(Λ′jΘ

2Λj) = 2θjΛ
′
jdiag(0, ..., 0, θj , 0, ..., 0)Λj

= 2Λ′jdiag(0, ..., 0, θ2
j , 0, ..., 0)Λj ; (36)

θj
∂

∂θj
(Λ′jΘ

2SΘ2Λj) = 2Λjdiag(0, ..., 0, θ2
j , 0, ..., 0)SΘ2Λj

+ 2Λ′jΘ
2S diag(0, ..., 0, θ2

j , 0, .., 0)Λj . (37)

Now, consider the operator β = [θ1
∂
∂θ1

+ ...+θp
∂
∂θp

] operating on Λ′jΘ
2Λj and Λ′jΘ

2SΘ2Λj .

Then we have the following:

β(Λ′jΘ
2Λj) = 2Λ′jΘ

2Λj , β(Λ′jΘ
2SΘ2Λj) = 2[2Λ′jΘ

2SΘ2Λj ]. (38)

Since ∂
∂θj

lnL = 0, j = 1, ..., p the operator β operating on lnL is also zero. That is,

np− n
r∑

j=1

Λ′jΘ
2Λj

1 + δj
+

r∑

j=1

2Λ′jΘ
2SΘ2Λj

1 + δj

−
r∑

j=1

Λ′jΘ
2Λj

(1 + δj)2
(Λ′jΘ

2SΘ2Λj)−
p∑

i=1

θ2
i sii = 0. (39)
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Comparing (35) and (39) we have

np+
∑

j

Λ′jΘ
2SΘ2Λj

1 + Λ′jΘ
2Λj
−

p∑

i=1

θ2
i sii = 0. (40)

Since (34) holds for each j, multiply by (1+ δj)
2 then we have the following observing that

1 + δj = 1 + Λ′jΘ
2Λj .

−nΘ2Λj + Θ2SΘ2Λj −Θ2
(Λ′jΘ

2SΘ2Λj)

1 + δj
Λj = O ⇒

−n(1 + Λ′jΘ
2Λj)Θ

2Λj + (1 + Λ′jΘ
2Λj)Θ

2SΘ2Λj − (Λ′jΘ
2SΘ2Λj)Θ

2Λj = O.

Pre-multiplying by Λ′j and simplifying we have

−n(1 + Λ′jΘ
2Λj)(Λ

′
jΘ

2Λj) + (1 + Λ′jΘ
2Λj)(Λ

′
jΘ

2SΘ2Λj)− (Λ′jΘ
2SΘ2Λj)(Λ

′
jΘ

2Λj) = 0

⇒ (Λ′jΘ
2SΘ2Λj) = n(1 + Λ′jΘ

2Λj)(Λ
′
jΘ

2Λj). (41)

After substituting the value of Λ′jΘ
2SΘ2Λj from (41) into (34) and simplifying we have

−n(ΘΛj)− (Λ′jΘ
2Λj)(ΘΛj) + (ΘSΘ)(ΘΛj) = O.

Let Uj = ΘΛj . Then

[ΘSΘ− n(1 + U ′jUj)I]Uj = O. (42)

Now, after substituting the value of ΛjΘ
2SΘ2Λj from (41) into (40) we have

np+
∑

j

nΛ′jΘ
2Λj −

p∑

j=1

θ2
i sii = 0.

Let

c =
1

p

r∑

j=1

Λ′jΘ
2Λj =

1

p

r∑

j=1

U ′jUj . (43)

Then from (4.10)
p∑

i=1

[(1 + c)− θ2
i

sii
n

] = 0.

One solution here is

θ2
i = (1 + c)

n

sii
, i = 1, ..., p. (44)

But from, (4.11), Θ̂SΘ̂ = (1 + c)nR,R = sample correlation matrix. Then from (4.10) an

eigenvalue of nR is of the form
n(1+Û ′jÛj)

1+c . Hence the procedure is the following: Compute
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all eigenvalues of the sample correlation matrix R. Let Uj , j = 1, ..., r be the eigenvectors

corresponding to the largest r eigenvalues of R. Then c = 1
p

∑r
j=1 U

′
jUj and

Λ̂j = Θ̂−1Uj =
1√

n(1 + c)
diag(

√
s11, ...,

√
spp)Uj and

Θ̂ =
√
n(1 + c)diag(

1√
s11

, ...,
1
√
spp

). (45)

This completes the estimation of Λj , j = 1, ..., r and Θ.

Note 4.1. If the parameters in (5), under the identification conditions Φ = I and

Λ′Ψ−1Λ = diagonal, are taken as Ψ−
1
2 = Θ = diag(θ1, ..., θp) and Uj = ΘΛj , j = 1, ..., r

then it is easily seen that each θi is estimated by θ̂2
i = n

sii
, i = 1, ..., p so that Θ̂SΘ̂ = nR

where R is the sample correlation matrix.

Maximum value of the likelihood function

The exponential part in lnL is −1
2tr(Θ̂SΘ̂) + 1

2n
∑r

j=1 U
′
jUj . Observe that from the

definition of c, we have n
∑r

j=1 U
′
jUj = ncp and tr(Θ̂SΘ̂) = (1 + c)ntr(R) = (1 + c)np.

Hence the exponent simplifies to −1
2(1 + c)np + 1

2npc = −np
2 . Hence the estimates given

(4.12) will maximize the likelihood function.

5. Testing of Hypotheses

The usual test in this topic is to test for identifiability or to test the hypothesis Ho that

the population covariance matrix Σ > O can be represented as Σ = ΛΦΛ′+ Ψ when Φ = I

and Λ′Ψ−1Λ = a diagonal matrix with positive diagonal elements and Ψ > O is a diagonal

matrix and Λ = (λij) is a p× r, r ≤ p matrix of full rank r and of the factor loadings λij ’s.

That is,

Ho : Σ = ΛΛ′ + Ψ. (46)

When the model is of the form X = µ + Λf + e where X, with X ′ = (x1, ..., xp), is the

p× 1 vector of observed scores on p tests or p batteries of tests, µ is p× 1 vector of general

effect, f is r×1 vector of unknown factors, Λ = (λij) is the unknown p×r matrix of factor

loadings and e is the p×1 error vector. When e and f are uncorrelated then the covariance

matrix of X is given by

Σ = ΛΦΛ′ + Ψ

where Cov(f) = Φ > O,Cov(e) = Ψ > O with Φ being r × r and Ψ being p × p and

diagonal. A simple random sample from this X means iid (independently and identically

distributed) p×1 vectors Xj , j = 1, ..., n where n is the sample size, X ′j = (x1j , x2j , ..., xpj).

The sample sum of products matrix or “corrected” sample sum of products matrix is
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S = (sij), sij =
∑n

k=1(xik− x̄i)(xjk− x̄j), where, for example, the average of xi, namely x̄i,

is x̄i =
∑n

k=1 xik/n. If e and f are independently normally distributed then the likelihood

ratio criterion or λ-criterion is given by

λ =
maxHo L

maxL
=

|Σ̂|n2
|Λ̂Λ̂′ + Ψ̂|n2

(47)

where Σ̂ = 1
nS and under Ho the covariance matrix is Σ = ΛΛ′ + Ψ and it is assumed

that Φ = I, an identity matrix, and the r× r matrix Λ′Ψ−1Λ = diag(δ1, ..., δr), a diagonal

matrix with diagonal elements δj > 0, j = 1, ..., r. From Section 4.2 it is seen that

|ΛΛ′ + Ψ| = |Ψ| |Λ′Ψ−1Λ + I|. (48)

and δj = 1 + Λ′jΨ
−1Λj = 1 + U ′jUj where Uj = Ψ−

1
2 Λj and Λj is the j-th column of Λ for

j = 1, ..., r. It is shown in (42) that Uj is an eigenvector of the sample correlation matrix

R and

r∏

j=1

(1 + δj) =

r∏

j=1

(1 + U ′jUj) = |Λ′Ψ−1Λ + I|.

But from (44) an eigenvalue of R is of the form
1+U ′jUj

(1+c) , j = 1, ..., r. That is, 1 + U ′jUj =

(1 + c)νj where let νj , j = 1, ..., p be the eigenvalues of R and let the largest r eigenvalues

be ν1, ..., νr. From (43), Ψ−
1
2 = Θ, Θ̂2 = n(1 + c)diag( 1

s11
, ..., 1

spp
).

|Σ̂|
|Ψ̂|

= |Θ̂S

n
Θ̂| = |(1 + c)R| = (1 + c)pν1...νp

⇒ | 1nS|
|Ψ̂| |Λ̂′Ψ̂−1Λ̂ + I|

=
(1 + c)pν1...νr...νp

(1 + c)rν1...νr

= (1 + c)p−rνr+1...νp. (49)

Hence we reject the null hypothesis for small values of the product (1 + c)p−rνr+1...νp the

product of the smallest p− r eigenvalues of the sample correlation matrix R, multiplied by

(1 + c)p−r. For evaluating the critical point one needs the null distribution of the product

of the eigenvalues (1 + c)p−rνr+1...νp, which is difficult to evaluate. For large samples or

for n large we have a chisquare approximation giving the result −2 lnλ is approximately

a chisquare with k degrees of freedom where k is the number of parameters restricted by

our hypothesis Ho, where λ is the likelihood ratio criterion. In our case the total number

of parameters available is p(p+1)
2 in Σ > O plus r(r−1)

2 the number of conditions imposed

by assuming λ′Ψ−1Λ to be a diagonal matrix. The number of parameters estimated is pr

in Λ plus p parameters in Ψ. Hence the number of parameters restricted by the hypothesis

Ho is
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k =
p(p+ 1)

2
+
r(r − 1)

2
− pr − p =

1

2
[(p− r)2 − (p+ r)]. (50)

Therefore

−2 lnλ ≈ χ2
k (51)

when n is large, where k is given in (50). We reject Ho for large values of this χ2
k or reject

Ho if the observed value of this χ2
k ≥ a with the probability Pr{χ2

k ≥ a} = α where α is

the probability for the type-1 error or the probability of rejecting Ho when in fact Ho is

true.
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Abstract

It is known that inliers are natural occurrences of a life test, where some of the items

fail immediately (instantaneously) or within a short time (early) of the life test due to

mechanical failure, inferior quality or faulty construction of items and components etc. We

consider random censored inliers to investigate the estimation of parameters of Gompertz

distribution. Gompertz distribution is used in many situations in medical studies, where

time-to-event occurrence of life times is observed. Because of the nature of the data, ob-

serving complete sample is not always viable, and hence random censoring concept is used

to study the data. We propose the classical estimation of parameters including the Uni-

formly Minimum Variance Unbiased Estimation for density function, reliability function

and some parametric functions of the model. As an illustration, we also discuss a randomly

censored real data set and study its characteristics.

Key words: Early failures, Failure time distribution, Inliers, Instantaneous failures, Randomly

censored sample.

1. Introduction

In failure time studies, inliers in a data set are subsets of observations sufficiently small,

relative to the rest of the observations, which appear to be inconsistent with the remaining

data set. They are either the results of instantaneous failures, or early failures, experienced

in life testing experiments as well as in clinical trials. The test items that fail at time are

called instantaneous failures, and the test items that fail prematurely are called early fail-

ures. These occurrences may be due to inferior quality or faulty construction or due to no
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response to the treatments. Such failures usually discard the assumption of a single mode

distribution and hence the usual method of modeling and inference procedures may not

be accurate in practice. There are series of papers developed and studied on this concept

since year 2000. One may refer to the early paper by Kale and Muralidharan (2000), who

have introduced the term inliers in connection with the estimation of parameters of early

failure models with modified failure time distribution being an exponential distribution

with mean θ and the number of inliers known. See also Kale (2003), Muralidharan and

Lathika (2006), Kale and Muralidharan (2008), and Muralidharan (2010), Muralidharan

and Arti (2008, 2013), Bavagosai and Muralidharan (2016), Muralidharan and Bavagosai

(2016a, b) etc for more details and for complete sample studies.

In life testing and reliability, most of the experiments often take a long time to termi-

nate, so the experiment does not observe all failure times due to cost and time consider-

ations. The concept of censoring is introduced to account for these considerations. The

censored observations contain only partial information (incomplete observations) about

the random variable of interest. Among various censoring concepts, the random censoring

is commonly used in time-to-event studies of medical applications including clinical trials.

For development of models and inference, one may refer to Meeker and Escobar (1998),

Lawless (2003), Klein and Moeschberger, 2003) and so on.

The Gompertz distribution was first introduced by the British actuary Benjamin Gom-

pertzin 1825 to describe human mortality and establish actuarial tables Gompertz (1825).

The Gompertz distribution with shape parameter α and scale parameter θ , have the

following CDF

F (x;α, θ) =

{
1− e− θ

α
(eαx − 1), x > 0;α > 0; θ > 0

0, o.w.,
(1)

This distribution has been widely used, especially in actuarial science, epidemiological,

biomedical studies and in demography and is now applied in fields including reliability

and life testing studies. This and a particular inliers prone example motivated us to try

Gompertz distribution to model the inliers situations using randomly censored data.

The organization of the paper is as follows: The inliers prone Gompertz model under

random censoring is presented in Section 2. We propose the maximum likelihood estimator

(MLE) and its asymptotic distribution followed by the unbiased estimation for various

parametric functions in Section 3. The Section 4 deals with a numerical example and its

inference.
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2. The Gompertz inliers model under random censoring

Consider the model F = {F (x; θ) , x ≥ 0, θ ∈ Θ} where F (x; θ) is a continuous failure

time CDF with F (0) = 0 . To accommodate a real life situation, where instantaneous

failures are observed at the origin, the model F is modified to G = {G (x; p, θ) , x ≥ δ, θ ∈
Θ, 0 ≤ p ≤ 1} by using a mixture in the proportions (1− p) and p respectively of a singular

random variable at δ and a random variable X with CDF F ∈ F . Here δ is known and

is sufficiently small. Thus, the modified failure time distribution is given by the CDF:

G (x; p, θ, δ) =

{
0, x < δ

(1− p) + pF (x; θ) , x ≥ δ. (2)

For δ = 0 the model reduces to the instantaneous failures case and if δ > 0 , it reduces

to the case of early failures. If we use F (x; θ) as in (1) in the model (2), we get the pdf of

Gompertz inliers model as

gX (x; p, α, θ) =





0, x < δ

1− pe− θ
α(eαδ−1), x = δ

pθeαxe−
θ
α

(eαx−1), x > δ.

(3)

Here δ is sufficiently small and assumed known. Consider X be the i.i.d. random

variable denoting life time having CDF defined by (3) and Y be the censoring variable

having CDF GY (x) = 1 − e− %
α

(eαx − 1), where % > 0 (known). Let Y is independent of

X . Let T = min (X,Y ) , X > δ . Then under random censoring setting, the distribution

function of T after some simplification is obtained as

gT (t; p,∝, θ∗) =





0, t < δ

1− pe− θ∗
α (eαδ − 1), t = δ

pθ∗eαte−
θ∗
α (eαt − 1), t > δ,

(4)

where θ∗ = θ + ζ .

3. Parameter estimation under random censoring

If we define

I (t) =

{
1, if t = δ

0, otherwise,
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then the pdf in (4) may be written as

gT (t; p,∝, θ∗) =
(

1− pe−
θ∗
α (eαδ − 1)

)I(t) (
p θ∗ eαte−

θ∗
α (eαt − 1)

)1−I(t)
, t > 0

Let r (≤ n) denote the number of life times greater than δ . Then the joint density

function of T is expressed as

gT (t; p, α, θ∗) =
(

1− pe−
θ∗
α (eαδ − 1)

)n−r
prθ∗reα

∑
ti>δ

tie
θ∗
α

∑
ti>δ

(eαti−1) (5)

3.1 The Maximum Likelihood Estimation and its asymptotic distribution

Assuming α known, the log-likelihood function is

logL (p, α, θ∗|x) = (n− r) log
(

1− pe−
θ∗
α (eαδ 1)

)
+ r log p+ r log θ∗

+ α
∑

ti>δ

ti −
θ∗

α

∑

ti>δ

(
eαti − 1

)
. (6)

Taking partial derivative of log-likelihood function with respect to θ∗ and p and equating

to zero we get MLE of θ∗ and p as θ̂∗MLE and p̂MLE , say, respectively as follows:

θ̂∗MLE =
rα

eαδ
∑

ti>δ

(
eα(ti−δ) − 1

) (7)

and

p̂MLE =
re

θ̂∗
α (eαδ−1)

n
(8)

The Fisher information matrix Ig (p, θ∗) is given by

Ig (p, θ∗) =

[
Ipp Ipθ∗

Iθ∗p Iθ∗θ∗

]

where,

Ipp = E

(
−∂

2 log g (p, α, θ∗|t)
∂p2

)
=

e−
θ∗
α (eαδ−1)

p
(

1− pe− θ∗
α (eαδ−1)

) =
e−

θ∗
α (eαδ−1)

p p∗
,

Iθ∗θ∗ = E

(
−∂

2 log g (p, α, θ∗|t)
∂θ∗2

)
=

(1− p∗)
{
θ∗2
[
eαδ−1
α

]2
+ p∗

}

θ∗2p∗

and
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Ipθ∗ = E

(
−∂

2logg (p, α, θ∗|x)

∂p∂θ∗

)
= − e−

θ∗
α (eαδ−1) (eαδ−1)

α

p∗

where, p∗ = 1− pe− θ∗
α (eαδ−1) . The determinant of Ig (p, θ∗) is ∆ = e

− 2 θ∗
α (eαδ−1)
θ∗2p∗

and

hence the inverse matrix I−1
g (p, θ∗) is

I−1
g (p, θ∗) =




p

(
θ∗2

(eαδ−1)
2

α2
+p∗

)

e−
θ∗
α (eαδ−1)

− θ∗2(eαδ−1)

α e−
θ∗
α (eαδ−1)

− θ∗2(eαδ−1)

α e−
θ∗
α (eαδ−1)

θ∗2
1−p∗


 .

Using the standard result of MLE, we have
(
p̂MLE , θ̂∗MLE

)′
∼ AN (2)

[
(p, θ∗)

′
, 1
nI

−1
g (p, θ∗)

]
.

The approximate confidence interval for p and θ∗ with confidence coefficient (1− α) are

respectively given by:

p̂± zα
2

√√√√√ p̂

(
θ̂∗2 (eαδ−1)

2

α2 + p̂∗
)

n e−
θ̂∗
α (eαδ−1)

and

θ̂∗ ± zα
2

√
θ̂∗2

n (1− p̂∗)

where, p̂∗ = 1− p̂ e− θ̂∗
α (eαδ−1) .

3.2 UMVUE of parametric functions

The pdf g (t; p, α, θ∗) given by (4) with α known, can be expressed as:

gT (t; p,∝, θ∗) =
(

1− pe− θ∗
α (eαδ 1)

)I(t) (
pe−

θ∗
α (eαδ 1)

)(1−I(t))

×



eαt

(
e−θ

∗)
[
eαδ(eα(t−δ) 1)

α

]

(
1
θ∗
)




(1−I(t))

. (9)

Also,

gT (t; p,∝, θ∗) = a (t)(1−I(t)) h [θ∗]d(t)(1−I(t))
[
g(θ∗)
1−p∗

]
[
g (θ∗)

(
p∗

1− p∗
)]I(t)

, (10)
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where a (t) = eat; h (θ∗) = e−θ
∗
; d (t) =

eαδ(eα(t−δ) − 1)
α ; g (θ∗) = 1

θ∗ ; p
∗ = 1−pe− θ∗

α (eαδ−1)

; a (t) > 0 and g (θ∗) =
∫
t>δ a (t)h [θ∗]d(t) dt.

The density in (10) so obtained is defined with respect to a measure µ (t) which is

the sum of Lebesgue measure over (δ,∞) and a singular measure at δ . Also, it is a

well know form of a two-parameter exponential family with natural parameters (η1, η2) =(
log
[
g (θ∗)

(
p∗

1−p∗
)]

, log [h (θ∗)]
)

generated by underlying indexing parameters (p∗, θ∗) .

Hence (I (x) , d (x) (1− I (x))) is jointly minimal sufficient for (p∗, θ∗) , as I (x) and
(eαδ−1)

α (1− I (x)) do not satisfy any linear restriction. The η s do not satisfy any linear

constraint too and hence natural parameter space is convex set E2 containing (10) a full-

rank family. Thus, (I (t) , d (t) (1− I (t))) is complete. Also, the joint density function of

T as in (3.1) can be expressed as

g (t; p, α, θ∗) = (p∗)n−r (1− p∗)r θ∗reα
∑
ti>δ

ti e
−θ∗ eαδ

α

∑
ti>δ

(
eα(ti−δ) − 1

)
(11)

= (p∗)n−r(1− p∗)rθ∗r e−θ∗z,
= P (n−R = n− r) G (z; θ∗| (n− r)) ,

where z = eαδ

α

∑
ti>δ

(
eα(ti−δ) − 1

)
. Therefore, by Neymans factorization theorem (n−R,Z)

are jointly sufficient for (p∗, θ∗) . Also, n − R is binomial which is the same as that of

R with parameter (n, p∗) , and is a complete family and the variable (Z|R = r, r > 0) is

distributed as a gamma random variable having density function:

g (z; θ∗|r) =
θ∗r

Γr
zr−1e−θ

∗z, z > δ; θ > 0. (12)

Hence, Z|R is completely sufficient for g (θ∗) = 1
θ∗ . This preserves the exponential

structure for (12). Using the result of Jayade (1993), (n−R,Z) is complete sufficient for

(p∗, θ∗) . The joint pdf of (n−R,Z) can be written as:

g (z;n− r, p, α, θ∗, d) =





(p∗)n , z = δ; r = 0

B (z, r, n)
e−θ
∗z
(

p∗
θ∗(1−p∗)

)n−r
(

1
θ∗ (1−p∗)

)n , z > δ; r = 1, 2, . . . , n.
(13)

where,

B (z, r, n) =

{
1, z = δ; r = 0(
n
r

)
zr−1

Γr , z > δ; r = 1, 2, . . . , n.
(14)

is such that

(p∗)n +
n∑

r=1

∫

z>δ
B (z, r, n) e−θz

(
p∗

θ∗ (1− p∗)

)n−r ( 1

θ∗ (1− p∗)

)−n
dz = 1.
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Following Roy and Mitra (1957) and Jani and Singh (1995), the UMVUEs of parametric

function φ (p, θ∗) exists if and only if φ (p, θ∗) can be expressed in the form:

φ (p, θ∗) = α (δ, δ, n) (p∗)n +

n∑

r=1

∫

z>δ
α (z, r, n)

e−θz
(

p∗
θ∗(1−p∗)

)n−r
(

1
θ∗ (1−p∗)

)n dz

Thus, the UMVUE of function φ (p, θ∗) in g (t; p, α, θ∗) is given by ψ (Z,R, n) = α(Z,R,n)
B(Z,R,n) ,

B (Z,R, n) 6= 0. The UMVUE for some of the parametric functions are given as results

below:

Result 1: Let T1, T2, . . . , Tn be n censored sample from (10), then for fixed t , the UMVUE

of the density function g (t; p, α, θ∗) is obtained as:

φt (z, r, n) =





a (x) B(z−d(t),r−1,n−1)
B(z,r,n) , t > δ; r = 1, 2, . . . , n; z > d (t) ,

B(z,r,n−1)
B(z,r,n) , t = δ; r = 0, 1, . . . , n− 1; z > d (t) ,

0, otherwise.

=





r(r−1)
n z eαt

(
1− eαδ(eα(t−δ)−1)

αz

)r−2

, t > δ; z >
eαδ(eα(t−δ)−1)

α ; r = 1, 2, . . . , n

n−r
n , t = δ; r = 0, 1, . . . , n− 1,

0, otherwise.

Result 2: The UMVUE of the variance of φx (Z,R, n) is obtained as:

v̂ar [φt (z, r, n)] =





φ2t (z, r, n)− φt (z, r, n)φt (z − d (x) , r − 1, n− 1) , t > δ; z > 2d (t) and

; r = 2, 3, . . . , n,

φ2t (z, r, n) , t > δ; d (t) < z < 2d (t) ,

φ2t (z, r, n)− φt (z, r, n)φt (, r, n− 1) , t = d; r = 0, 1, . . . , n− 1,

0, otherwise.

=






 r(r−1)

n z
eαt

(
1 −

eαδ

α

(
eα(t−δ)−1

)

αz

)r−2


2

−
r(r−1)2(r−2)e2αt


1−

eαδ

α

(
eα(t−δ)−1

)

αz



r−2


1−

eαδ

α

(
eα(t−δ)−1

)

α

(
z− eαδ

α (eα(t−δ)−1)
)




r−3

n(n−1) z
(
z− eαδ

α (eα(t−δ)−1)
) , t > δ; r = 2, 3, . . . , nand

; z > 2eαδ

α

(
eα(t−δ) − 1

)

 r(r−1)

n z
eαt

(
1 −

eαδ

α

(
eα(t−δ)−1

)

αz

)r−2


2

, t > δand

;
(
eα(t−δ) − 1

)
< αz

eαδ
<
(
eα(t−δ) − 1

)
,

r(n−r)
n2(n−1)

, t = δ; r = 0, 1, . . . , n− 1

0, otherwise.
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Result 3: For fixed z and r , the UMVUE of the reliability function R (t) = p (T > t)

, t ≥ d is obtained as: GT (t; p,∝, θ∗) = e−
ζ
α(eαt − 1)R (t) , where, the UMVUE of the

reliability function for (10) is

ĜT (t; p,∝, θ∗) =

∫

x>t
φx (z, r, n) dx

=





r
n

(
1− eαδ(eα(t−δ)−1)

αz

)r−1

, z > eαδ

α

(
eα(t−δ) − 1

)

0, otherwise.

Hence, the UMVUE of the reliability function R̂ (t) of (4) is

R̂ (t) =





r
ne

ζ
α(eαt − 1)

(
1− eαδ(eα(t−δ)−1)

αz

)r−1

, z > eαδ

α

(
eα(t−δ) − 1

)

0, otherwise

Result 4: The UMVUE of the variance of R̂ (t) is obtained as:

v̂ar
[
R̂ (t)

]
= e2 ζ

α(eαt − 1) v̂ar
[
ĜT (t; p,∝, θ∗)

]

where,

v̂ar
[
ĜT (t; p,∝, θ∗)

]

=





[
r
n

(
1− eαδ

α

(eα(t−δ)−1)
z

)r−1
]2
− r(r−1)

n(n−1)

(
1− 2eαδ(eα(t−δ)−1)

αz

)r−1

, z >
2eαδ(eα(t−δ)−1)

α

[
r
n

(
1− eαδ(eα(t−δ)−1)

αz

)r−1
]2
,

(eα(t−δ)−1)
α < αz

eαδ
<

2(eα(t−δ)−1)
α

0, otherwise.

Remark 1:The UMVUE of the density function (3) is φx (z, r, n) we may get as

φx (z, r, n) = −
[
dR̂(t)
dt

]
t=x

=





r
n eαxe

ζ
α

(eαx 1)

(
1− eαδ(eα(x−δ) 1)

αz

)r−2 [
(r−1)
z − ζ

(
1− eαδ(eα(x−δ) 1)

αz

)]
,

x > δ; z >
eαδ(eα(x−δ)−1)

α ; r = 1, 2, . . . , n
n−r
n , x = δ; r = 0, 1, . . . , n− 1

0, otherwise.

4. Application

In this section, we consider a randomly censored real data set on patients of acute

myelogenous leukemia reported to the International Bone Marrow Transplant Registry from
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Figure 1: Plots of density function and survival function for leukemia free survival time

data..

Klein and Moeschberger (2003). A sample of fifty patients had an allogeneic (allo) bone

marrow transplant where marrow from an HLA (Histocompatibility Leukocyte Antigen)

matched sibling was used to replenish their immune systems. The leukemia free survival

times (in months) for 50 transplant patients were: 0.030, 0.493, 0.855, 1.184, 1.283, 1.480,

1.776, 2.138, 2.500, 2.763, 2.993, 3.224, 3.421, 4.178, 4.441+, 5.691, 5.855+, 6.941+, 6.941,

7.993+, 8.882, 8.882, 9.145+, 11.480, 11.513, 12.105+, 12.796, 12.993+, 13.849+, 16.612+,

17.138+, 20.066, 20.329+, 22.368+, 26.776+, 28.717+, 28.717+, 32.928+, 33.783+, 34.211+,

34.770+, 39.539+, 41.118+, 45.033+, 46.053+, 46.941+, 48.289+, 57.401+, 58.322+ and

60.625+. The + denotes a censored observation.

The distribution fit of the data was carried out for all those uncensored observations,

and Gompertz distribution found to be a good fit. Many other authors have also concluded

this, and hence the details are not discussed further here. Figure 4.1 show the pdf and

survival functions curve for the leukemia free survival time data. Table 4.1 gives a summary

of estimates of models for some selected values of parameters of the leukemia free survival

time data. The entry in square brackets is the standard error (SE) of the estimate.

A visual look at the data supports the fact that there are few early failure observations.

Since the inliers detection is not part of this paper, we have not discussed the same here.

Note that the estimate of p and θ is comparable in instantaneous and early failure model

and the standard error is very small for estimates. The UMVU estimates of the pdf and
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Table 1: Summary of estimates of models for the leukemia free survival times: Estimates

for α = 0.0057 & ζ = 0.01271

Estimator (SE) Instantaneous Failure Early Failure Model

Model d = 0 d = 1.0

MLE of p 1.00000 (-) 0.98630 (0.03707)

MLE of θ∗ 0.04859 (0.00687) 0.04794 (0.01184)

MLE of θ 0.03589 (0.00687) 0.03531 (0.01184)

95% CI for p - (0.91360, 1.00000)

95% CI for θ∗ (0.03512, 0.06206) (0.02469, 0.07111)

95% CI for θ (0.02242, 0.04935) (0.01210, 0.05851)

UMVUE of pdf in (10):

φ2 (z, r, n) 0.04817 (0.00688) 0.04461 (0.00677)

φ20 (z, r, n) 0.05337 (0.00762) 0.04943 (0.00750)

φ50 (z, r, n) 0.06332 (0.00904) 0.05864 (0.00890)

UMVUE of pdf in (3):

at t =2 0.03306 (0.00320) 0.03187 (0.005430)

at t =20 0.01901 (0.00021) 0.01864 (0.004353)

at t =50 0.00613 (0.000435) 0.00620 (0.005603)

UMVUE of reliability

function GT (t; p,∝, θ∗) :

at t =2 0.90845 (0.01247) 0.89653 (0.03296)

at t =20 0.36031 (0.05281) 0.36866 (0.05282)

at t =50 0.05845 (0.02340) 0.06393 (0.02419)

UMVUE of reliability

function R (t) :

at t =2 0.93197 (0.02401) 0.91974 (0.02481)

at t =20 0.47160 (0.03063) 0.48253 (0.03166)

at t =50 0.12191 (0.04881) 0.13333 (0.05045)
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reliability function decreases as point of time increases. It is seen that as number of inliers

increases, the estimate of parameters decreases.
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Abstract

In this paper, we introduce a new generalization of Gompertz distribution, namely

q-Gompertz distribution and study its properties. We show that for large values of the

parameter, distribution belong to class L. Expressions for moments, mode and quantile

function are derived. Characterizations of the new distribution are obtained. The un-

known parameters of the distribution are estimated using maximum likelihood method.

The new distribution is fitted to a real data set to show the flexibility/competency of the

model.

Key words: Gompertz distribution, Mortality Rate, Maximum Likelihood, Order Statistics, Path-

way models.

1. Introduction

Gompertz distribution was proposed by Gompertz in 1825 and he showed that age spe-

cific mortality rates increase exponentially with age, over much of adult life span. Gompertz

distribution is applied in various contexts of mortality studies and lifetime analysis. Gom-

pertz curve has been utilized as a growth curve (see, Winsor (1932)). A random variable

X on (0,∞) is said to have a Gompertz distribution and write X ∼ Gompertz(η, b), if its

probability density function (pdf) is

f(x) = ηbe−η(e
bx−1) η > 0, b > 0. (1)

Many authors have studied the q-analog of distributions, that is, introducing path-

way parameter to the existing distribution. The addition of this parameter stretches the

distribution and improve the flexibility of the distribution for modelling data. The word
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q-distribution is used, because the parameter added to the base distribution is q through

this construction. For details of study on q-analogs such as q-Weibull, q-Logistic, q-Mittag-

Leffler and q-Esscher transformed Laplace distribution see, Jose and Naik(2009), Mathai

and Provost(2006), Sebastian and Gorenflo(2016) and Rimsha and George(2018).

A wide variety of socio economic variables have distributions that are heavy-tailed. The

motivation of this study is to introduce a new statistical distribution which has thicker tail

compared to Gompertz distribution and can be used to provide good fit to some real data

sets.

1.1. Pathway models

In this section, we present some basic aspects of pathway models introduced by Mathai(2005).

Let us consider a type-2 beta density given by,

f(x) =
Γ(β)

Γ(α)Γ(β − α)
xα−1(1 + x)−β, 0 < x <∞, α > 0, β > 0. (2)

Now q-analog of (2) is given by,

f1(x) = c1x
α−1(1 + η(q − 1)xδ)

−β
q−1 , 0 < x < ∞, α > 0, β > 0, q > 1, η > 0, δ > 0 (3)

where c1 is normalizing constant given by,

c1 =
δη

α
δ (q − 1)

α
δ Γ( β

q−1)

Γ(αδ )Γ( β
q−1 − α

δ )
.

Here q is the pathway parameter. For q < 1, we can replace (q− 1) in (3) by −(1− q) and

we get,

f2(x) = c2x
α−1(1− η(1− q)xδ)

β
1−q , 1− η(1− q)x > 0, α > 0, β > 0, q < 1, δ > 0, (4)

where c2 is,

c2 =
η
α
δ (1− q)αδ Γ( β

q−1 + α
δ + 1)

Γ(αδ )Γ( β
1−q − α

δ )
.

Note that putting q = 0, η = 1, β replaced by β − 1, we get type-I beta distribution. For

various sub-models of (3) and (4), see Mathai and Haubold (2008).

Rest of the paper is organized as follows: In Section 2, we propose a new generalization

of Gompertz distribution, namely q-Gompertz distribution based on path way models de-

scribed above and discuss the nature of density function, distribution function, hazard rate

function and showed the membership in class L of the q-Gompertz distribution. Various

structural properties of q-Gompertz distribution such as moments, cumulants, quantile
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function and mode are studied in section 3. Characterizations of q-Gompertz distribu-

tion are obtained in Section 4. In Section 5, we study the estimation of parameters of

the q-Gompertz distribution, using the method of Maximum Likelihood. In Section 6, we

have fitted the model to a real life data to show the flexibility of the new distribution.

Concluding remarks are presented in Section 7.

2. The q-Analoque of the Gompertz distribution

Here we propose a q-analogue of the Gompertz distribution using the transformation

y = ln(x) in (3) and (4) and putting α = δ = b, β = 1. Then for x > 0 and q > 1, (3)

reduces to,

f3(y) =
(1 + η(q − 1))

−q+2
q−1 bη(q − 1)Γ( 1

q−1)

Γ( 1
q−1 − 1)

eby(1 + η(q − 1)eby)
−1
q−1 ,

y > 0, q > 1, η > 0, b > 0. (5)

If we restrict q between 1 and 2, equation (5) reduce to

f4(y) = (1 + η(q− 1))
−q+2
q−1 bη(2− q)eby(1 + η(q− 1)eby)

−1
q−1 , y > 0, 1 < q < 2, η > 0, b > 0.

(6)

Now for q < 1, we have,

f5(y) =
(1− η(1− q))

q−2
1−q bη(1− q)Γ( 1

1−q + 2)

Γ( 1
1−q + 1)

eby(1− η(1− q)eby)
1

1−q

, 1− η(1− q)eby > 0, q < 1, η > 0, b > 0. (7)

which further reduces to,

f5(y) = (1− η(1− q))
q−2
1−q (2− q)bηeby(1− η(1− q)eby)

1
1−q ,

0 < y <
1

b
ln(

1

η(1− q)), q < 1, η > 0, b > 0. (8)

Both equation (6) and (8) reduce to classical Gompertz distribution, that is,

f(y) = ηbe−η(e
by−1)

as q → 1.

In Figure 1, we have presented the density function of q-Gompertz for different values of

q between 1 and 2 for η = .5 and b = 1. From graph we can observe that the curves get

thicker tails as q increases from 1 to 2. Also note that as the values of q decreases from 2
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Figure 1: Pdf of q-Gompertz distribution for q between 1 and 2.

Figure 2: Pdf for different values of q < 1.
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Figure 3: Hazard rate function for different values of q.

to 1, the peakedness increases and slowly converge to Gompertz density. In Figure 2, we

have presented the density function of q-Gompertz for different values of q between 0 and

1 for η = .5 and b = 1. It can be seen that as q moves from 0 to 1, the peakedness reduces

and slowly converge to Gompertz density.

The cumulative distribution function of q-Gompertz for q > 1 is given by,

F (y) =
(

1− (1 + η(q − 1))
−q+2
q−1 (1 + η(q − 1)eby)

q−2
q−1

)
, (9)

and for q < 1 is

F (y) =
(

1− (1− η(1− q))
q−2
1−q (1− η(1− q)eby)

2−q
1−q
)
. (10)

Thus, hazard rate function is given by (for q > 1)

µ(y) = bη(2− q)eby(1 + η(q − 1)eby)−1, (11)

and for q < 1 ,

µ(y) = (2− q)bηeby(1− η(1− q)eby)−1 0 < y <
1

b
ln(

1

b(1− q)). (12)

The graph of hazard rate function for various values of q is given in Figure 3. We can

observe that the hazard rate function is non-decreasing.
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An important class of distributions used in risk theory and queuing theory is the class

L distributions.

Definition 2.1. A distribution F belongs to the class L if

lim
x→∞

1− F (x− y)

1− F (x)
= 1, ∀y ∈ R.

Lemma 2.1. A distribution F ∈ L if and only if limx→∞ µ(x) = 0, where µ(x) is the

hazard rate function . For details of Lemma 2.1, see Klüppelberg (1988).

Theorem 2.1. The q-Gompertz distribution belong to class L as q → 2.

Proof. From the hazard rate function (11), we have

lim
y→∞

µ(y) =
(2− q)b
(q − 1)

. (13)

Now

lim
q→2

lim
y→∞

µ(y) = 0.

3. Structural properties

In this Section, we derive expressions for moments and cumulants of q-Gompertz dis-

tribution. Expressions for quantile function and mode are also derived.

3.1. Moments

Let random variable Y follows q-Gompertz distribution. Then we can obtain the rth

moment of Y from its moment generating function. Let µ
(y)
r denote rth moment of Y.

Then,

µ(y)r =
∂r

∂tr
[E(etY )] at t = 0. (14)

Also note that we get q-anlog of Gompertz distribution using the transformation Y = ln(X)

where X has the pdf (3) and (4). Then,

E(etln(X)) = E(Xt). (15)

Thus,

µ(y)r =
∂r

∂tr
[E(etY )] =

∂r

∂tr
[E(Xt)] at t = 0. (16)
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But from (3), letting β = 1, α = δ = b we have,

E(Xt) =
Γ( tb + 1)Γ( 1

q−1 − t
b − 1)

η
t
b (q − 1)

t
bΓ( 1

q−1 − 1)
. (17)

Then,

µ(y)r =
(1 + η(q − 1))

2−q
q−1

Γ( 1
q−1 − 1)

∂r−1

∂tr−1
Γ( tb + 1)Γ( 1

q−1 − t
b − 1)

η
t
b (q − 1)

t
b

×
(

1

b
ψ(
t

b
+ 1)− 1

b
ψ(

1

q − 1
− t

b
− 1)− 1

b
ln(η)− 1

b
ln(q − 1)

)
at t = 0, (18)

where the ψ(.) is the logarithmic derivative of the gamma function. Thus,

µ(y)r =

r−1∑

n=0

(
r − 1

n

)
µ(y)n K

y)
r−n, (19)

where K
y)
r−n is the (r − n)th cumulant of Y. Here

K
(y)
r−n =

∂r−n

∂tr−n
log[E(Xt)] at t = 0

=
∂r−n−1

∂tr−n−1

(
1

b
ψ(
t

b
+ 1)− 1

b
ψ(

1

q − 1
− t

b
− 1)− 1

b
ln(η)− 1

b
ln(q − 1)

)
, at t = 0, (20)

where,

K(y)
m = (m− 1)!

(
(−1)mζ(m, 1) + ζ(m,

1

q − 1
− 1)

)
, (21)

where ζ(., .) is the generalized Riemann zeta function (Mathai (1993)). Moments of Y can

be obtained recursively using equation (19) and (21). Similarly for q < 1, from (8) we

have,

E(Xt) =
Γ( tb + 1)Γ( 1

1−q + 2)

η
t
b (q − 1)

t
bΓ( 1

1−q + t
b + 2)

, (22)

for η > 0, b > 0, q < 1, tb + 1 > 0, 1
1−q + 2 > 0, 1

1−q + t
b + 2 > 0. Thus the form of (19) will

be same but (20) changes, that is

Ky
r−n ==

∂r−n−1

∂tr−n−1

(
ψ(
t

b
+ 1)− 1

b
ψ(

1

q − 1
+
t

b
+ 2)− 1

b
ln(η)− 1

b
ln(q − 1)

)
,

at t = 0, (23)

where,

Ky
m = (m− 1)!(−1)m

(
ζ(m, 1)− ζ(m,

1

q − 1
+ 2)

)
. (24)
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3.2. Quantiles

The quantile function of the random variable Y for 1 < q < 2 is given by,

yp =
1

b
ln

(
(1− p)

q−1
q−2 (1 + η(q − 1))

η(q − 1)
− 1

η(q − 1)

)
, (25)

for q < 1,

yp =
1

b
ln

(
1

η(1− q) −
(1− p)

1−q
2−q (1− η(1− q))
η(1− q)

)
. (26)

3.3. Mode

For 0 < q < 2 mode of the random variable Y is given by,

mode =
1

b
ln

(
1

η(2− q)

)
.

3.4. Simulation

A random variable Y having q-Gompertz distribution can be simulated, for 1 < q < 2

as,

Y =
1

b
ln

(
(1− U)

q−1
q−2 (1 + η(q − 1))

η(q − 1)
− 1

η(q − 1)

)
, (27)

for q < 1,

Y =
1

b
ln

(
1

η(1− q) −
(1− p)

1−q
2−q (1− η(1− q))
η(1− q)

)
, (28)

where U ∼ U(0, 1).

4. Characterization

The following Propositions establishes a characterization of q-Gompertz in terms of the

hazard function.

Proposition 4.1. Let X : Ω → (0,∞) be a continuous random variable. The pdf of X,

is (6) if and only if its hazard function µ(x) satisfies the differential equation

µ′(x)− bµ(x) = −b
2η2(q − 1)(2− q)e2bx
(1 + η(q − 1)ebx)2

.
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Proof. If X has pdf (6), then clearly the above differential equation holds. Now, if the

differential equation holds, then

d

dx

(
e−bxµ(x)

)
= (2− q)bη d

dx

(
1

1− η(q − 1)eby

)

or, equivalently,

e−bxµ(x) = (2− q)bη 1

1− η(q − 1)eby

which gives hazard function of q-Gompertz distribution for q > 1.

Proposition 4.2. Let X : Ω → (0, 1b ln
(

1
b(1−q)

)
) be a continuous random variable. The

pdf of X, is (8) if and only if its hazard function µ(x) satisfies the differential equation

µ′(x)− bµ(x) =
b2η2(1− q)(2− q)e2bx

(1− η(1− q)ebx)2
, 0 < x <

1

b
ln

(
1

b(1− q)

)

with the boundary condition limx→ 1
b
ln( 1

b
(1−q))µ(x) = (2− q)bη/(b− η)(1− q).

Proof. If X has pdf (8), then clearly the above differential equation holds. Now, if the

differential equation holds, then

d

dx

(
e−bxµ(x)

)
= (2− q)bη d

dx

(
1

1− η(1− q)eby
)

or, equivalently,

e−bxµ(x) = (2− q)bη 1

1− η(1− q)eby

which gives hazard function of q-Gompertz distribution for q < 1.

5. Estimation

Let y1, y2, ..., yn be an observed random sample from q-Gompertz distribution with

unknown parameters η, b, q. The log-likelihood function for 1 < q < 2 is given by,

ln(L(y, η, b, q)) =
−n(q − 2)

(q − 1)
ln(1 + η(q − 1)) + nln(2− q) + nln(η) + nln(b)+

b
n∑

i=1

yi −
1

q − 1

n∑

i=1

ln(1 + η(q − 1)ebyi), (29)
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for q < 1,

ln(L(y, η, b, q)) =
n(q − 2)

(1− q) ln(1− η(1− q)) + nln(2− q) + nln(η) + nln(b)+

b
n∑

i=1

yi +
1

1− q
n∑

i=1

ln(1− η(1− q)ebyi). (30)

The partial derivative of the log likelihood with respect to the parameters for 1 < q < 2

are

∂ln(L)

∂b
=

n

b
+

n∑

i=1

yi −
1

q − 1

n∑

i=1

η(q − 1)yie
byi

1 + η(q − 1)ebyi
(31)

∂ln(L)

∂η
=

−n(q − 2)

η(q − 1) + 1
+
n

η
− 1

q − 1

n∑

i=1

(q − 1)ebyi

1 + η(q − 1)ebyi
, (32)

∂ln(L)

∂q
=
−n

2− q −
n

(q − 1)2
ln(1 + η(q − 1))− nη(q − 2)

q − 1(1 + η(q − 1))
+

1

(q − 1)2

n∑

i=1

ln(1 + η(q − 1)ebyi)− 1

q − 1

n∑

i=1

ηebyi

1 + η(q − 1)ebyi
. (33)

The partial derivative of the log likelihood with respect to the parameters for q < 1 are

∂ln(L)

∂b
=

n

b
+

n∑

i=1

yi −
1

q − 1

n∑

i=1

η(1− q)yiebyi
1− η(1− q)ebyi (34)

∂ln(L)

∂η
=

−n(q − 2)

1− η(1− q) +
n

η
− 1

1− q
n∑

i=1

(1− q)ebyi
1− η(1− q)ebyi , (35)

∂ln(L)

∂q
=
−n

2− q −
n

(1− q)2 ln(1− η(1− q))− nη(q − 2)

(1− q)(1− η(1− q))+

1

(1− q)2
n∑

i=1

ln(1− η(1− q)ebyi)− 1

1− q
n∑

i=1

ηebyi

1− η(1− q)ebyi . (36)

The Maximum Likelihood estimates(MLE) of (b, η, q) are the solution of the simultaneous

equations
∂LogL

∂b
= 0,

∂LogL

∂η
= 0,

∂LogL

∂q
= 0. These equations cannot be solved analyt-

ically. So numerical technique such as Newton-Raphson method can be employed to get

the MLEs.

6. Data analysis

In this section we consider a real life data and illustrate the flexibility of the q-Gompertz

distribution. We fit the model to the data set and compare it with Gompertz distribution.
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We consider a data consists of observations on breaking stress of carbon fibres(in Gba).

This data had been studied previously by Nichols and Padgett(2006), Fatima and Roohi

(2015) and Jayakumar et al. (2018) to compare generalizations of Pareto distributions.

The data is given in Table 1.

Table 1: Breaking stress of carbon fibres data.

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11

4.42 2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.90

3.75 2.43 2.95 2.97 3.39 2.96 2.53 2.67 2.93 3.22

3.39 2.81 4.2 3.3 2.55 3.31 3.31 2.85 2.56 3.56

3.15 2.35 2.55 2.59 2.38 2.81 2.77 2.17 2.83 1.92

1.41 3.68 2.97 1.36 .98 2.76 4.91 3.68 1.84 1.59

3.19 1.57 .81 5.56 1.73 1.59 2 1.22 1.12 1.71

2.17 1.17 5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38

1.84 .39 3.68 2.48 .85 1.61 2.79 4.7 2.03 1.8

1.57 1.08 2.03 1.61 2.12 1.89 2.88 2.82 2.05 3.65

We now consider Total Time on Test (TTT) plot, a graphical method to identify the

shape of the hazard rate function of the data. In Figure 4 we have presented the TTT

plot the data. It is clear from the figure that the hazard rate function is increasing. We

have fitted the q-Gompertz distribution for the data and compared it with Gompertz

distribution having pdf (1).

For both the distributions we have computed log-Likelihood (-logL), Akaike Informa-

tion Criterion(AIC), Bayesian Information Criterion(BIC) and Hannan-Quinn information

criterion(HQIC) to check the goodness of fit of the model to the data. The computed val-

ues are presented in Table 2. Clearly the q-Gompertz distribution gives a better fit to this

data. The fitted densities are presented in Figure 5.
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Figure 4: TTT plot

Figure 5: Estimated pdf.
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Table 2: Parameter estimates and goodness of fit statistics for models fitted to the data.

Model Estimates -logL AIC BIC HQIC

Gompertz η̂=.123 149.117 302.234 307.443 304.342

b̂=.7909

q-Gompertz η̂=.026 142.0921 290.1842 297.9997 293.3472

b̂=1.6995

q̂=1.5085

7. Conclusion

In this paper, as a generalization of Gompertz distribution, q-Gompertz distribution

is introduced. The new distribution belongs to class L. Characterizations of q-Gompertz

distribution are obtained. It is shown that the new model is a competitor of Gompertz

distribution, for modelling certain types of data sets. Also generation of random variates

from the new model is simple. We expect that the new model may attract the attention

of researchers, as a viable competitor of the Gompertz distribution.
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Abstract

In this paper, we introduce a compound Poisson process with truncated negative bi-

nomial compounding distribution, called a Generalized Polya-Aeppli Process. We derive

expressions for its p.m.f and discuss several properties. We propose a risk model with

Generalized Polya-Aeppli process as the counting process. The joint distribution of the

time to ruin and deficit at the time of ruin is derived. The differential equation of the ruin

probability is given. As an example, we consider the case in which the claim size has an

exponential distribution.

Key words: Generalized Polya-Aeppli distribution, Ruin probability, aggregate claims distribu-

tion, stop loss moment.

1 Introduction

The Poisson process is a stochastic counting process that appears in a large variety

of daily life situations. But it is a good fit only when the count data at hand is equi-

dispersed, that is, when the variance of the data is equal to the mean. It is observed that

for many available count data, the sample variance is smaller or greater than the sample

mean, which is referred to as under and over dispersion, respectively. This motivated the

researchers to search for alternative models. As a result, there are two directions in which

the Poisson process be generalized: by compounding and by mixing distributions. Mixing
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is just a mechanism for constructing new distributions.

Starting from the parameterized distribution g(x/θ) of a random variable X with un-

known parameter θ we may obtain a new family of distributions, if we allow parameter

θ to be itself a random variable with distribution function H(θ). Then the unconditional

distribution of X is said to be a mixture distribution and is given by

g(x) =

∫
g(x/θ)dH(θ).

Usually, g(x/θ) is called the mixed distribution and the parameters distribution H(θ) is

called the mixing distribution. Mixtures are usually considered as alternative models that

offer more flexibility. For discrete distributions ”compounding” is commonly used in place

of ”mixing”. The process of compounding creates a large class of distributions.

The compound distributions can be constructed as follows. Let M be a counting random

variable andX1, X2, X3... be i.i.d random variables independent of M. Then the distribution

of S = X1 +X2 + ...+XM is called a compound distribution and is given by

PS(z) =
∞∑

k=0

P (M = k)g∗k(z) ,

where g∗k is the k-fold convolution of distribution of X. In this regard, the distribution of

X is called the compounding distribution, while that of M is the compounded distribution.

The compound Poisson process is a generalization of the Poisson process obtained by

compounding with a suitable distribution. It has wide applications in various fields such

as transport, ecology, radiology, quality control, telecommunications etc. The compound

Poisson process assures a better description for clustering of events.

The compound Poisson process {M(t), t ≥ 0} is given by the sum

M(t) =

N(t)∑

i=1

Xi ,

where N(t) is a homogenous Poisson process and X1, X2, X3... is a sequence of i.i.d random

variables independent of N(t). The distribution of X is called compounding distribution.

Assume that the compounding random variable X has truncated geometric distribution.

Then we get Polya-Aeppli process {M(t), t ≥ 0}. Minkova (2004) introduced Polya-Aeppli

process as a compound Poisson process with the truncated geometric compounding dis-

tribution. They showed that Polya-Aeppli process provides greater flexibility in modeling

count data when it possesses overdispersion property.
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The negative binomial model is one of the most popular models to count data. Among

specific fields where negative binomial distribution have been found to provide useful rep-

resentations may be mentioned in accident statistics, Econometrics, quality control and

biometrics. In many cases, however, the entire distribution of counts is not observed. In

particular, more often zeros are not observed. The negative binomial distribution often

arises in practice where the zero group is truncated. It is a known fact that the truncated

geometric distribution is a special case of the truncated negative binomial distribution.

Therefore, in the Polya-Aeppli process instead of the geometric distribution we consider

the truncated negative binomial as compounding distribution. Consequently, Generalized

Polya-Aeppli process will be obtained.

2 Generalized Polya-Aeppli Distribution

Consider a random variable

M = X1 +X2 + ...+XN ,

where N has a Poisson distribution with parameter λ, independent of the i.i.d random

variales X1, X2, X3.... Suppose that X1, X2, X3... are truncated negative binomial with

parameters r and 1− ρ, ρ ∈ [0, 1] and r > 0.

The PMF and the PGF of the compounding random variable X are given by

P (X = x) =

(
r+x−1
x

)
ρx(1− ρ)r

1− (1− ρ)r
, x = 1, 2, ..., 0 < ρ < 1, r > 0.

and

P (s) = EsX =
(1− ρs)−r − 1

(1− ρ)−r − 1
.

Then, we can obtain the PGF and PMF of the random variable N as follows:

ΨM (s) = e−λ(1−P (s)) = e
−λ(1− (1−ρs)−r−1

(1−ρ)−r−1
)
,

P (M = m) = e−λ , m = 0

= e−λρm
m∑

i=1

i∑

k=1

(−1)i+k
(
i
k

)
( λ
(1−ρ)−r−1)i

(
rk+m−1

m

)

i!
, m = 1, 2, . . . (1)

The notation that we used to refer generalized Polya-Aeppli distribution with parameters

λ, ρ and r is GPA(λ, ρ, r).

The cumulative distribution function of N is given by

F (0) = e−λ,

F (x) = e−λ
x∑

j=0

x−j∑

i=1

i∑

k=1

(−1)i+k( λ
(1−ρ)−r−1)i

(
rk+n−j−1

n−j
)
ρn−j

i!
, x ≥ 1. (2)
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3 Generalized Polya-Aeppli Process

Let M(t) denotes the no of occurrence in the interval (0, t]. For the Generalized Polya-

Aeppli process, M(t) has a Generalized Polya-Aeppli distribution, GPA(λt, ρ, r) and is

given by

P (M(t) = m) =




e−λt, m = 0

e−λtρm
∑m

i=1

∑i
k=1

(−1)i+k(ik)(
λt

(1−ρ)−r−1)
)i(rk+m−1

m )
i! , m = 1, 2, . . .

(3)

To express {M(t), t ≥ 0} is a Generalized Polya-Aeppli process with parameters λ, ρ and

r, we use the notation M(t) ∼ GPAP(λ, ρ, r).

Remark 3.1. Taking into account the equality
∑i

k=1(−1)k
(
i
k

)(
k+m−1
m

)
= (−1)i

(
m−1
i−1
)
,

when r = 1, the Generalized Polya-Aeppli process GPAP (λ, ρ, 1) reduces to the Polya-

Aeppli process. If r = 1 and ρ = 0, then it is a homogeneous Poisson process with intensity

λ. Thus the Poisson process and the Polya-Aeppli process are the special cases of Gener-

alized Polya-Aeppli process.

Definition 3.1. A counting process {M(t), t ≥ 0} is called a Generalized Polya-Aeppli

process with parameters λ, ρ and r if it satisfies

1 M(0)= 0, i.e, it starts at zero;

2 M(t) has independent increments;

3 For each t > 0, the number of occurrence M(t) in any interval of length t has Gen-

eralized Polya-Aeppli distribution with parameters λt, ρ and r.

We have

EM(t) =
rρλt

(1− ρ)(1− (1− ρ)r)
(4)

and

V ar(M(t)) =
rρλt(1 + rρ)

(1− (1− ρ)r)(1− ρ)2
. (5)

using (4) and (5) it can be shown that autocovariance between N(s) and N(t), s < t is

c(s, t)) =
rρλs(1 + rρ)

(1− (1− ρ)r)(1− ρ)2
.

Hence the autocorrelation function

ρ(s, t) =
c(s, t)√

var (M(s)). var(M(t))

=
(s
t

) 1
2
.
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It can be shown that

ρ(t, t′) =
min(t, t′)

(t, t′)
1
2

.

This is the autocorrelation function of the process.

The Fisher index of dispersion is given by

FI(M(t)) =
var(M(t))

EM(t)

=
1 + rρ

1− ρ

= 1 +
(1 + r)ρ

1− ρ > 1.

If r=0 the Generalized Polya-Aeppli process is over dispersed, which offer more flexibility

in modeling count data compared to the standard Poisson process.

4 Alternate Definition of Generalized Polya-Aeppli process

In this section we define Generalized Polya-Aeppli process as a pure birth process.

Definition 4.1.

A counting process {M(t), t ≥ 0} is called a Generalized Polya-Aeppli process with

parameters λ, ρ and r if

1. M(0) = 0;

2. M(t) has stationary independent increments;

3. the state transition probabilities are defined as follows:

P (M(t+ h) = m/M(t) = n) =





1− λh+ o(h), m = n

(r+i−1
i )ρi(1−ρ)r
1−(1−ρ)r λh+ o(h), m = n+ i, i = 1, 2, . . .

(6)

for every n = 0, 1, . . . where o(h)→ 0 as h→ 0.

Let Pm(t) = P (M(t) = m), m = 0, 1, 2, . . ..

From the above postulates we get the following Kolmogorov forward equations:

P ′0(t) = −λP0(t),

P ′m(t) = −λPm(t) +
λ

(1− ρ)−r − 1

m∑

i=1

(
r + i− 1

i

)
ρiPm−i(t), m ≥ 1, (7)
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with initial conditions.

P0(0) = 1 and Pm(0) = 0, m = 1, 2, . . .

Using the equations of (7) we shall have the following differential equation for ψM(t)

∂

∂t
ψM(t)(s) = −λ(1− P (s))ψM(t)(s).

With ψM(t)(1) = 1, the above differential equation admit of the solution

ψM(t)(s) = e−λt(1−P (s))

But this is the PGF of the GPAP(λ, ρ, r), which leads to (3).

Therefore two definitions of the generalized Polya-Aeppli Process are equivalent.

5 Properties of GPAP(λ, ρ, r)

In this section, we discuss some properties of GPAP(λ, ρ, r).

5.1 Interarrival Times Distributions

Theorem 5.1. For the Generalized Polya-Aeppli process GPAP(λ, ρ, r) interval of time

Z1 to the first occurrence is exponential random variable with parameter λ and Z2, the time

between 1st and 2nd occurrence of the process takes value zero with probability 1− rρ
(1−ρ)−r−1

and with probability rρ
(1−ρ)−r−1 , exponentially distributed with parameter λ.

Proof. Let Zk be the time of the kth arrival, for k = 1, 2, . . . . Let Wn =
∑n

i=1 Zi be the

waiting time up to the nth occurrence and M(t) denote the number of occurrence up to

the instant t. For any t ≥ 0 and n ≥ 0, we have the following relation.

P (M(t) = n) = P (Wn ≤ t)− P (Wn+1 ≤ t), n = 0, 1, . . . (8)

For n = 0, equation (8) yields

P (M(t) = 0) = 1− P (Z1 ≤ t) = 1− FZ1(t), (9)

where FZ1(t) is the distribution function of Z1.

According to (3),

P (M(t) = 0) = e−λt. (10)

From (9) and (10), we get

FZ1(t) = 1− e−λt.

Hence the density function of Z1 is

fZ1(t) = λe−λt, t ≥ 0.
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i.e, Z1 is exponential random variable with parameter λ.

Now from (8), for n = 1, we have,

P (M(t) = 1) = P (W1 ≤ t)− P (W2 ≤ t).

Then taking Laplace transform on both sides of above equation, we get

rρ

(1− ρ)−r − 1

λ

λ+ s

s

s+ λ
= LSW1(s)− LSW2(s).

On simplification, we get

LSZ1+Z2(s) =
λ

λ+ s

[
1− rρ

(1− ρ)−r − 1
+

rρ

(1− ρ)−r − 1

λ

s+ λ

]
,

It follows that Z1 and Z2 are independent. Furthermore, Z2 has an exponential distribution

with parameter λ and takes value zero with probability 1− rρ
(1−ρ)−r−1 .

Thus, the P.D.F of of Z2 is given by

fZ2(t) =

(
1− rρ

(1− ρ)−r − 1

)
δ0(t) +

(
rρ

(1− ρ)−r − 1

)
λe−λt, t ≥ 0,

where δ0(t) is the dirac delta function.

Remark 5.1. However the Laplace transform of the random variable Wn, n = 3, 4, . . . is too

complicated. Therefore, distributions of remaining interarrival times cannot be expressed

in an explicit form.

5.2 The Waiting Time Distribution

Theorem 5.2. The distribution function of the waiting time up to the nth occurrence is

given by

FWn(t) = 1− e−λt
(

1 +

n−1∑

m=1

am,tρ
m

)
,

where

am,t =

m∑

i=1

i∑

k=1

(−1)i+k
(
i
k

) (
λt

(1−ρ)−r−1

)i

i!

(
rk +m− 1

m

)
.

Proof. Let Zn denotes the time between (n − 1)th and nth occurrence of the process,

n = 2, 3, . . ..

For any given integer n ≥ 1 and time t > 0, the relation between waiting time up to the

nth occurrence Wn and counting random variable M(t), is given by

{Wn ≤ t} = {M(t) ≥ n}
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Hence

P (M(t) ≥ n) = P (Wn ≤ t).
The cumulative distribution function of Wn is given by

FWn(t) = P (Wn ≤ t)
= P (M(t) ≥ n)

= 1− P (M(t) ≤ n− 1)

= 1− e−λt
(

1 +
n−1∑

m=1

ρm
m∑

i=1

i∑

k=1

(−i)i+k
(
i
k

)
( λt
(1−ρ)−r−1)i

(
rk+m−1

m

)

i!

)

= 1− e−λt
(

1 +

n−1∑

m=1

am,tρ
m

)
.

5.3 Martingale Property

Theorem 5.3. For M(t) ∼GPAP(λ, ρ, r), the process N(t) = M(t) − rρλt
(1−ρ)(1−(1−ρ)r) is a

martingale with respect to (Ω,Ft, ρ), where

Ft = σ{M(s), 0 ≤ s ≤ t}.

Proof. Since E(M(t)− rρλt
(1−ρ)(1−(1−ρ)r)) = 0 and M(t) has independent increments, for any

t ≥ s we have

E(N(t)/Fs) = E

(
M(t)− rρλt

(1− ρ)(1− (1− ρ)r)
/Fs

)

= E

(
M(t)−M(s)− rρλ(t− s)

(1− ρ)(1− (1− ρ)r)
/Fs

)

+M(s)− rρλs

(1− ρ)(1− (1− ρ)r)

= E

(
M(t− s)− rρλ(t− s)

(1− ρ)(1− (1− ρ)r)

)

+M(s)− rρλs

(1− ρ)(1− (1− ρ)r)

= N(s).

Therefore, {N(t), t ≥ 0}is a martingale.

5.4 Relation between GPAP(λ, ρ, r) and Uniform distribution

Theorem 5.4. Given that only one occurrence of the generalized Polya−Aeppli process,

{M(t), t ≥ 0} has occurred in [0, t], then the distribution of time interval of that occurrence

is uniform in [0, t].



K.K.Jose and Shalitha Jacob 57

Proof. Let Z1 denotes the time of first occurrence.

P (Z1 ≤ x|M(t) = 1 =
P ( only one occurrence in (0, x], there was no occurrence in (x, t])

P (M(t) = 1)

=
P (M(x) = 1,M(t− x) = 0)

P (M(t) = 1)

=

e−λxrρλx·e−λ(t−x)
((1−ρ)−r−1)
e−λtrρλt

(1−ρ)−r−1

=
x

t
, 0 ≤ x ≤ t.

6 Application to Risk Theory

Consider the standard risk model {X(t), t ≥ 0} of an insurance company given by

X(t) = ct−
M(t)∑

k=1

Yk,

(
0∑

1

= 0

)
. (11)

Here, c is a premium income per unit time and the claim size sequence {Yi}∞i=1 are i.i.d

random variables having common distribution function F such that F (0) = 0 and with

mean value µ, independent of the counting process {M(t), t ≥ 0}.
We assume that the counting process {M(t), t ≥ 0} in the risk model given in (11) is

a Generalized Polya-Aeppli process and the resulting risk model obtained is called the

generalized Polya-Aeppli risk model.

The relative safety loading θ is given by

θ =
EX(t)

E
∑M(t)

k=1 Yk
=

(
c(1− ρ)(1− (1− ρ)r)

rλρµ
− 1

)

and in connection with positive safety loading θ > 0, c > rρµλ
(1−ρ)(1−(1−ρ)r) .

Suppose that the time of ruin of the company with initial capital u is denoted by τ and is

defined as τ = inf{t : X(t) + u < 0}. Here we take the convention that inf φ =∞

The ruin probability of a company having initial capital u is defined as

Ψ(u) = P (τ <∞). (12)

Then the non ruin probability is given by Φ(u) = 1−Ψ(u).

The joint probability distribution W (u, z) of the time to ruin τ and deficit at the time

of ruin D = |u+X(τ)| is given by

W (u, z) = P (τ <∞, D ≤ z), z ≥ 0, (13)
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It is obvious that

lim
z→∞

W (u, z) = Ψ(u). (14)

We can obtain the following equation by using the postulates in (6).

W (u, z) = (1− λh)W (u+ ch, z) +
λ

(1− ρ)−r − 1

∞∑

k=1

(
r + k − 1

k

)
ρkh

×
[∫ u+ch

0
W (u+ ch− x, z)dF ∗k(x) + (F ∗k(u+ ch+ z)− F ∗k(u+ ch))

]
+ o(h),

where F ∗k)(x), k = 1, 2, . . . is the distribution function of Y1 + Y2 + . . .+ Yk.

or, equivalently

W (u+ ch, z)−W (u, z)

ch
=
λ

c
W (u+ ch, z)− λ

∑∞
k=1

(
r+k−1
k

)
ρk

c((1− ρ)−r − 1)

×
[∫ u+ch

0
W (u+ ch− x, z)dF ∗k(x) + (F ∗k(u+ ch+ z)− F ∗(u+ ch))

]
+ o(h),

In the limit, as h→ 0,

∂

∂u
W (u, y) =

λ

c

[
W (u, y)−

∫ u

0
W (u− x, z)dG(x)− (G(u+ z)−G(u))

]
(15)

where

G(x) =
1

(1− ρ)−r − 1

∞∑

k=1

(
r + k − 1

k

)
ρkF ∗k(x),

is the nondefective distribution function of the claims with

G(0) = 0, G(∞) = 1.

Related to safety loading above equation can be written as

∂

∂u
W (u, z) =

(1− ρ)(1− (1− ρ)r)

rpµ(1 + θ)

×
[
W (u, z)−

∫ u

0
W (u− x, z)dG(x)− (G(u+ z)−G(u))

] (16)

From (14) and (15) we get the following integro differential equation for ruin probability.

d

du
Ψ(u) =

λ

c

[
Ψ(u)−

∫ u

0
Ψ(u− x)dG(x)− (1−G(u))

]
, u ≥ 0.

Theorem 6.1. The function W (0, z) is given by

W (0, y) =
λ

c

∫ y

0
(1−G(u))du. (17)
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Proof. Integrating (15) from 0 to ∞ and then using W (∞, z) = 0, we have

−W (0, z) =
λ

c

[∫ ∞

0
W (u, z)du−

∫ ∞

0

∫ u

0
W (u− x, z)dG(x)du

−
∫ ∞

0
(G(u+ z)−G(u))du

]
.

Substitution in the double integral and after simplification, we get

W (0, z) =
λ

c

∫ ∞

0
(G(u+ z)−G(u))du.

Hence

W (0, z) =
λ

c

∫ y

0
(1−G(u))du.

Theorem 6.2. The ruin probability with no initial capital satisfies

Ψ(0) =
λrρµ

c(1− ρ)(1− (1− ρ)r)
(18)

Proof. From (14) and (17) we obtain,

Ψ(0) = lim
z→∞

W (0, z) =
λ

c

∫ ∞

0
(1−G(u))du. (19)

Suppose that G(x) be the distribution function of a random variable X. Using the result

E(X) =
∫∞
0 (1−G(x))dx, (19) becomes.

Ψ(0) =
λ

c
E(X) (20)

Considering the definitions of G(x) and EY = µ, we get

E(X) =
µ

(1− ρ)−r − 1

∞∑

k=1

k

(
r + k − 1

k

)
ρk (21)

=
µrρ

(1− ρ)(1− (1− ρ)r)
.

From the Equations (20) and (21) we get the result.
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7 Exponentially Distributed claims

Suppose that the claim sizes have exponential distribution with mean µ. i.e., F (x) =

1 − e−
x
µ , x ≥ 0, µ > 0. Now the density function g(x) = d

dxG(x) obtained is an Erlang

mixture and is given by

g(x) =

∞∑

k=1

qk(
x
µ)k−1e−

x
µ

µ(k − 1)!
, x > 0,

where qk = P (Y = k) =
(r+k−1

k )ρk

(1−ρ)−r−1 , k = 1, 2, . . . is the mixing distribution, see Willmot and

Lin(2001).

The survival function corresponding to the above density is given by

G(x) =
∞∑

k=1

Qk−1(
x
µ)k−1e−x/µ

(k − 1)!
, x > 0,

where

Qk−1 = P (Y > k − 1)

=

∞∑

i=k

(
r+i−1
i

)
ρi

(1− ρ)−r − 1
k = 1, 2, 3...

Applying the theorem 6.1, for the case when claim size has exponential distribution, W (0, y)

is given by

W (0, Z) =
λµ

c

∞∑

k=1

Qk−1γ(k, Z/µ)

(k − 1)!
,

where γ(j, y) =
∫ y
0 u

j−1e−u du is the incomplete gamma function.

8 Derivation of Total Claims Distribution, Total Loss(gain)

Distribution and Stop Loss Moment

A central problem in risk theory is the modeling of the probability distribution of the ag-

gregate claims. The aggregate claims distribution and its components, the claim count and

claim amount distributions are used to compute ruin probabilities and to provide other in-

formation of interest to the decision makers. Panjer(1981) found that a compound Poisson

process approximately modeled the aggregate claims distribution, based on the collective

risk assumption.

Here we focus on the case where the aggregate claims distribution is modelled by

a compound generalized Polya-Aeppli process. This is equivalent to assuming that the
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counting process is Generalized Polya-Aeppli process. We assume that the claim sizes

have a continuous distribution with distribution function F such that F (0) = 0, and the

mean value µ.

Denote by N(t) the no of claims, by Zi the ith claim amount and by S(t) the aggregate

claim amount in a time period of length t

S(t) =

M(t)∑

i=1

Zi.

In this case ES(t) corresponds to the pure premium and is given by

ES(t) = EM(t)E(Z)

=
rρλt

(1− ρ)(1− (1− ρ)r)
µ

Let H(x, t) denotes the cumulative distribution function of the aggregate claims and F ∗k(x)

is the k-fold convolution of claim amount distribution function which can be calculated

recursively as

F ∗k(x) =

∫ x

0
F ∗k−1(x− y)f(y)dy.

with

F ∗0(x) = 1, x ≥ 0

= 0, x < 0.

Recalling that the number of claims has Generalized Polya-Aeppli distribution, We have

H(x, t) =
∞∑

k=0

P (M(t) = k)F ∗k(x)

= e−λt
[
I[0,∞)(x) +

∞∑

k=1

ak,tρ
kF ∗k(x)

]
, x ≥ 0, (22)

where ak,t =
∑k

i=1

∑i
j=1(−1)i+j

(
i
j

)(
rj+k−1

k

)
( λt
(1−ρ)−r−1)i and IA(x) is the indicator function

of the set A.

Finding the distribution function of the aggregate gain(loss) is one of the principal

problems in the collective risk theory. Here we derive the distribution function of aggre-

gate loss (gain) from generalized Polya-Aeppli risk model using the distribution function

of aggregate claims.

Consider the generalized Polya-Aeppli risk model

X(t) = ct− S(t),
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mentioned in (11) , where X(t) denotes the aggregate gain (loss) and S(t) is the aggregate

claims in a time period of length t. In this model the number of claims occurring in a

period of length t has the Generalized Polya-Aeppli distribution.

Then the cumulative distribution function G(x, t) of X(t) is given by

G(x, t) = P (X(t) ≤ x)

= P (S(t) ≥ ct− x)

= H(ct− x, t)

=

∞∑

k=1

ak,tρ
kF
∗k

(ct− x), (23)

Where F
∗k

(x) is the survival function of F ∗k(x).

Stop-loss moment of any positive order can be obtained using (22) and is given by

∫ ∞

y
(x− y)mdH(x, t) = e−λt

∞∑

k=1

ak,tρ
k

∫ ∞

y
(x− y)mf∗k(x). (24)

where f∗k is the k-fold convolutions of pdf of claims.

Note that the case m = 0 we get F (a), the tail function of the aggregate claim amount.

When m = 1, the stop-loss premium results and is given by

∫ ∞

y
H(x, t)dx = µe−λt

∞∑

k=1

kak,tρ
nF
∗k
I (y), (25)

where F ∗k
I (x) = 1

EX

∫ x
0 F

∗k
X (u)du, is the integrated tail distribution of F ∗k.

Now we discuss a particular case in which the claim sizes have an exponential distribution

with mean µ. i.e, F (x) = 1− e−x/µ, x ≥ 0, µ > 0.

In this case the k fold convolution of claim sizes is given by

F ∗k(x) =
γ(k, x/µ)

Γk

= 1− e−x/µ
k−1∑

j=0

(xµ)j

j!

= 1− e−x/µek(x/µ),

where Γk is the gamma function and γ(a, x) =
∫ x
0 t

a−1e−tdt is the incomplete gamma

function.

Hence the distribution function of aggregate claims with respect to Generalized Polya-

Aeppli risk model with exponential claims is

H(x, t) = e−λt
(
I[0,∞)(x) +

∞∑

k=1

ak,tρ
k[1− e−x/µek(x/µ)]

)
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and

the distribution function of aggregate loss(gain) is given by

G(x, t) = e−λt
(
I[0,∞)(x) + e

− (ct−x)
µ

∞∑

k=1

ak,tρ
kek(

ct− x
µ

)

)
.

Based on (24), for exponential claims, the stop loss moment is

∫ ∞

y
(x− y)mdH(x, t) = e

−(λt+ y
µ
)
∞∑

k=1

m∑

i=0

(−1)m−i
(
m
i

)
ak,tρ

kym−iµiΓ(k + i) ek+i(y/µ)

Γ(k)

From (25) we can obtain stop-loss premium as

∫ ∞

y
H(x, t)dx = e−(λt+y/µ)

∞∑

k=1

ak,tρ
k [kµek+1(y/µ)− yek(y/µ)]

9 Discussion

In this paper, we introduced a new compound Poisson process, called the Generalized

Polya-Aeppli process, which is obtained by compounding with truncated negative binomial

distribution. We have shown that it is a generalization of Polya-Aeppli process. We found

that this model is capable of handling over-dispersed count data. We have defined the risk

model with Generalized Polya-Aeppli counting process and is thereby called Generalized

Polya-Aeppli risk model. This model can be used as a model for insurance business. We

have studied the key focus of ruin theory, the probability of ruin for this model and as

a special case, we have obtained an expression for the ruin probability with zero initial

capital.
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Abstract

Time-dependent stress-strength reliability deals with the chance of survival for systems

with dynamic strength and/or dynamic stress. When a system is allowed to run continu-

ously, each run of the system will cause a change in the strength of the system. And the

repeated occurrence of stress on the system over each run will affect the survival capacity

of the system. In this paper we consider the distribution of time taken for the completion

of a run by the system as gamma and the strength of the system as Weibull or Weibull

mixture. Moreover, the strength of the system is assumed to decrease by a constant value

by the end of each run. The stress acting on the system is assumed either as fixed through-

out the observation period, or as increasing by a constant over each run of the system. We

obtain expressions for stress-strength reliability and also discuss numerical illustrations of

the result.

Key words: Stress-strength reliability, Gamma Renewal process. Weibull distribution, Finite

mixture distribution, EM algorithm.

1. Introduction

In reliability theory, stress-strength reliability measures the chance of strength of a

system to overcome the stress acting on it. Every object or individual has its own strength

for survival. When they are subject to any kind of stress, they will survive only if their

strength exceed the stress. Stress-strength reliability model can be used for comparing the
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effectiveness of two treatments, to compare the life length of two equipments etc. Let Y

denote the random strength of the system under consideration and X be the stress acting

on that system. Then the stress-strength reliability of the system is denoted by R and is

defined as R = P [X < Y ].

The concept of stress-strength reliability theory was originated by [2]. [7] collected

several point and interval estimation of stress-strength models using different approaches.

[1] proposed an estimator of R based on kernel estimators of the densities of X and Y.

[12] illustrated estimation of R using bootstrap method. Recently [6] and [10] studied the

stress-strength reliability estimation of single system using various generalizations of half

logistic distribution.

Nowadays, many of the studies in stress-strength reliability estimation concentrates on

the case where the stress or strength or both of them changes with respect to time, and

hence the term time dependent stress-strength reliability. Let Y (t) represent the strength

of a system at time t and X(t) be the stress on the system at t. Under time-dependent

stress-strength reliability model, we are interested in the estimation of the stress-strength

reliability function

R(t) = P [X(t) < Y (t)], (1)

which gives the chance of survival of the system at time t. For example, many often we

have to download files to mobile phones. The downloaded files consumes the memory space

of the phone corresponding to the size of that file. It will cause a reduction in the speed of

functioning of the phone. So each time we download a new file, there is an increase in the

number of files piled up in the phone memory and a reduction in the functioning speed of

the phone.Time dependent stress-strength reliability models were studied in [11], [4, 5], [3]

and [8, 9].

When a system is allowed to run continuously, each run of the system will cause a

change in the strength of the system. And the repeated occurrence of stress on the system

over each run will affect the survival capacity of the system. In this paper we consider

the distribution of time taken for the completion of a run by the system as gamma and

the strength of the system as Weibull or Weibull mixture. Moreover, the strength of the

system is assumed to decrease by a constant value by the end of each run. The stress

acting on the system is assumed either as fixed throughout the observation period, or as

increasing by a constant over each run of the system.

This paper is organized as follows: Estimation of stress-strength reliability with gamma

cycle times under fixed and random fixed stress is discussed in Section 2. A brief description

of EM algorithm for estimating parameters of Weibull mixture distribution is given in

Section 3. A numerical illustration of the models based on simulated data are given in

Section 4.
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2. Estimation of R(t) with gamma cycle times

Consider a system which is allowed to work continuously. The system executes several

runs during the time period of observation say (0, t). The time taken for completion of

a run by the system is a random variable and we call it as cycle time. In this paper we

assume that the cycle times are gamma distributed. Hence the total number of runs within

the entire time period will have a renewal process. Let the cycle time Z follows gamma

distribution with p.d.f.,

f(z) =
akzk−1e−az

(k − 1)!
; z ≥ 0. (2)

Then the number of runs during the time interval (0,t) has the following distribution.

Pn(t) = e−at
(n+1)k−1∑

r=nk

(at)r

r!
;n = 0, 1, 2, .... (3)

We consider the estimation of R(t) under two different situations. In the first case, we

consider systems which are subject to fixed stress throughout the observation period and

in the second case systems subject to random stress are considered .

2.1. Estimation of R(t) when stress is fixed

Here, we assume that the strength of the system decreases by a constant say, a0. It is

also assumed that the stress acting on the system do not vary throughout the observation

period. Let Xj be the stress imposed on the system during jth cycle time and the corre-

sponding strength of the system be Yj . Then probability of functioning of the system after

n runs is given by

Rn = P [(X1 < Y1) ∩ (X2 < Y2) ∩ · · · ∩ (Xn < Yn)]

= P [(x0 < Y0 − a0) ∩ (x0 < Y0 − 2a0) ∩ · · · ∩ (x0 < Y0 − na0)]
= P [(x0 + na0 < Y0)]

=

∫ ∞

x0+na0

f(y0)dy0 (4)

Therefore, the value of R(t) can be obtained as

R(t) =

∞∑

n=0

Pn(t)Rn

=

∞∑

n=0

e−at
(n+1)k−1∑

r=nk

(at)r

r!

∫ ∞

x0+na0

f(y0)dy0.
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2.1.1. Estimation of R(t) with Weibull initial strength

In many practical situations, it is observed that the distribution of life time random

variable have Weibull distribution. Let the strength of the system have Weibull distribution

with shape parameter α and scale parameter β having p.d.f

f(y0) =
α

β
yα−10 e−y

α
0 /β; y0 ≥ 0 (5)

Then Rn is given by

Rn = e−(x0+na0)
α/β (6)

and the corresponding R(t) is obtained as

R(t) =
∞∑

n=0

e−at
(n+1)k−1∑

r=nk

(at)r

r!
e−(x0+na0)

α/β. (7)

Change in R(t) corresponding to change in parameters are given in Figure 1. From Figure

1, we can see that the value of R(t) increases with an increase in shape parameter values

and decreases with an increase in scale parameter value of strength when initial strength

of the distribution is Weibull distributed. And R(t) increases with an increase in shape

parameter value and decreases with an increase in rate parameter value of cycle time

distribution.

2.1.2. Estimation of R(t) with Weibull mixture initial strength

In the previous subsection we have considered the distribution of initial strength as

Weibull. In this subsection, we consider mixture of Weibull distributions, which is a more

flexible choice for initial strength distribution. The p.d.f. of initial strength distribution

be

f(y0) =

m∑

i=1

πi
α

βi
yα−10 e−y

α
0 /βi .; y0 ≥ 0 (8)

The chance of the system works after the completion of n runs is,

Rn =
m∑

i=1

πie
−(x0+na0)α/βi (9)

and the corresponding stress-strength reliability is obtained as

R(t) =
∞∑

n=0

e−at
(n+1)k−1∑

r=nk

(at)r

r!

m∑

i=1

πie
−(x0+na0)α/βi (10)

=

m∑

i=1

πi

∞∑

n=0

e−at
(n+1)k−1∑

r=nk

(at)r

r!
e−(x0+na0)

α/βi (11)
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Figure 1: Variation in R(t) corresponding to change in parameters

From equation (11) we can observe that, the reliability of a system with gamma cycle times

and Weibull mixture initial strength is same as the mixture of reliability with gamma cycle

times and Weibull initial strength with the same mixing probabilities. Change in R(t)

corresponding to change in parameters are given in Figure 2. From this figure we can see

that the value of R(t) increases with an increase in shape parameter value and decreases

with increase in rate parameter value of cycle time distribution.

2.2. Estimation of R(t) with gamma cycle times and random fixed stress

Let the initial strength of the system, say Y0 be a continuous random variable with

density function f(y0) and the initial stress on the system X0 be also a continuous random

variable with p.d.f g(x0). The system is allowed to run continuously and when the system

runs, its strength decreases by a0 and the stress increases by b0 on completion of each run.
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Figure 2: Variation in R(t) corresponding to change in parameters

Hence, the probability that the system works after n runs is given by

Rn = P ((X1 < Y1) ∩ (X2 < Y2) ∩ · · · ∩ (Xn < Yn))

= P ((x0 + b0 < y0 − a0) ∩ (x0 + 2b0 < y0 − 2a0) ∩ · · · ∩ (x0 + nb0 < y0 − na0))
= P (x0 + n(a0 + b0) < y0)

=

∫ ∞

0

∫ ∞

x0+n(a0+b0)
f(y0)g(x0)dy0dx0 (12)

Therfore the reliability of the system at time t is

R(t) =

∞∑

n=0

Pn(t)

∫ ∞

0

∫ ∞

x0+n(a0+b0)
f(y0)g(x0)dy0dx0 (13)

=
∞∑

n=0

e−at
(n+1)k−1∑

r=nk

(at)r

r!

∫ ∞

0

∫ ∞

x0+n(a0+b0)
f(y0)g(x0)dy0dx0 (14)

2.2.1. Estimation of R(t) with Weibull initial stress and strength

Let the initial strength of the system as well as the initial stress on the system are

Weibull distributed with parameters (α, β1) and (α, β2) respectively. The time taken for

completion of a run is assumed to be a gamma variate. Then the chance for survival of

the system after n runs is

Rn = e−(n(a0+b0))
α/β1 ;n = 1, 2, ... (15)



Krishnendu K., Drisya M. and Joby K. Jose 71

with

R0 =
β1

β1 + β2
(16)

Then the corresponding stress-strength reliability is obtained as

R(t) = e−at
k−1∑

r=0

(at)r

r!

β1
β1 + β2

+
∞∑

n=1

e−at
(n+1)k−1∑

r=nk

(at)r

r!
e−(n(a0+b0))

α/β1 (17)

Change in R(t) corresponding to change in different parameters of stress and strength

Figure 3: Variation in R(t) corresponding to change in parameters

distributions are given in Figure 3. From the figure we can see that the value of R(t) in-

creases with an increase in shape parameter values and decreases with and increase in scale

parameter value of strength when initial strength of the distribution is Weibull distributed.

Also R(t) increases with an increase in shape parameter value of stress distribution.

2.2.2. Estimation of R(t) with Weibull mixture initial stress and strength

Let the initial strength of the system follows a mixture of Weibull distributions with

p.d.f.

f(y0) =

m1∑

i=1

πi
α

βi
yα−10 e−y

α
0 /βi ; y0 ≥ 0 (18)

and initial stress on the system follows mixture of Weibull distribution with p.d.f.

g(x0) =

m2∑

j=1

pj
α

θj
xα−10 e−x

α
0 /θj ;x0 ≥ 0. (19)
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When the system runs, its strength decreases by a0 and the stress increases by b0 on

completion of each run. The time taken for completion of a run is assumed to be a gamma

variate. Then the chance for survival of the system after n runs is

Rn =

m1∑

i=1

πi

m2∑

j=1

pje
−(n(a0+b0))α/βi ;n = 1, 2, ... (20)

with

R0 =

m1∑

i=1

πi

m2∑

j=1

pj
βi

βi + θj
(21)

Then the corresponding stress-strength reliability is obtained as

R(t) = e−at
k−1∑

r=0

(at)r

r!

m1∑

i=1

πi

m2∑

j=1

pj
βi

βi + θj

+
∞∑

n=1

e−at
(n+1)k−1∑

r=nk

(at)r

r!

m1∑

i=1

πi

m2∑

j=1

pje
−(n(a0+b0))α/βi (22)

Change in R(t) corresponding to change in different parameters stress and strength

distributions are given in Figure 4.

3. EM algorithm for estimating parameters of Weibull mix-

ture distribution

Here we give a brief description of the EM algorithm for estimating the parameters of

a finite mixture of weibull distribution. Consider the data consist of n independent and

identically distributed observations y0 = (y1, y2, ..., yn) from a finite weibull mixture with

pdf

f(y0), ψ) =
k∑

i=1

πif(y0, ψ).

Where

f(y0, ψ) =
α

βi
yα−10 e

− y
α
0
βi ; y0 > 0

and

ψ = (π1, π2, ..., πk, α, β1, β2, ...βk)

The associated loglikelihood function is

L(y, ψ) =

n∑

i=1

logf(y0, ψ). (23)
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Figure 4: Variation in R(t) corresponding to change in parameters

The MLE of ψ, say ψ̂, is determined such that

L(y, ψ̂) = supψL(y, ψ). (24)

Define a variable zij such that zij = 1 if jth unit of the sample comes from the ith component

and zij = 0 otherwise. Since each component comes from exactly one component, we have∑k
i=1 zij = 1, πi = P [zij = 1].

Yi/zij=1 ∼ Weibull(α, βi), i = 1, 2, ..., k.

In missing data setup y can be considered as a incomplete data and x = (x1, x2, ..., xn)

where xj = (yj , zj) and zj = (zij , i = 1, 2, ..., k) as a complete data set. The density

function corresponding to one observation in complete data set is

fc(xj , ψ) = fc(yj , zj , ψ) =

k∑

i=1

πiIzijfi(yj , ψ). (25)
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and the loglikelihood function is

Lc(x, ψ) =

n∑

j=1

logfc(xj , ψ). (26)

The EM algorithm iteratively maximizes Q(ψ/ψ(t)) = E(Lc(x, ψ/y, ψ
(t))) instead of max-

imizing L(y, ψ), where ψ(t) is the current value at t and then compute the expectation

Eψ(t)(Lc(x, ψ)/y) =
n∑

i=1

k∑

j=1

Eψ(t)(zij/y)(logπj + logfj(yi, θj)) (27)

Eψ(t)(zij/y) = Pψ(t)(zij = 1/y)

= Pij(ψ
(t))

=
π
(t)
i f(yj , θi)∑k

i=1 π
(t)
i f(yj , θi)

, j = 1, 2, ..., n; i = 1, 2, ..., k (28)

It is the posterior probability that jth observation belongs to the ith component in the tth

iteration. Thus we have

Q(ψ/ψ(t)) =

n∑

j=1

k∑

i=1

Pij(ψ
(t))(logπi + logfi(yi, θi)). (29)

Where θ = (α, β) Hence the EM algorithm consist of the following two steps.

Step1.E-step: Compute Q(ψ/ψ(t))

Step2.M-step:Compute the value of ψ(t+1) that maximizes Q(ψ/ψ(t)).

As in the case of MLE from a multinomial likelihood, we have

P
(t+1)
ij =

n∑

j=1

Pij(ψ
(t))

n
, i = 1, 2, ..., k. (30)

For the (t+ 1)th update other parameters (θ1, θ2, ..., θk), we have to obtain the solution of

n∑

i=1

k∑

j=1

Pij(π
(t))

∂

∂θ
logfj(yi, θj)) = 0 (31)

We repeat the procedure until the desired accuracy is obtained. We get the estimates as:

α̂i =




n∑

j=1

zij(yj)
βi

n∑

j=1

zij




1
βi

(32)
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β̂i =



∑n

j=1 zijy
β̂i
j log(yj)

∑n
j=1 zijy

β̂i
j

−
∑n

j=1 zijlog(yj)∑n
j=1 zij



−1

(33)

4. Numerical Analysis

In this section we carry out Monte Carlo simulation to illustrate the estimation of the

value of R(t) of the time dependent system with gamma cycle times. Here we consider two

examples. In the first example consider the system with finite mixture Weibull distribution

for initial strength and in the second example we consider the system with finite mixture

Weibull distribution for initial stress and initial strength.

To simulating samples forN(t) ,the number of cycles during (0, t), generate (c1, c2, ..., cni)

of size ni from Gamma distribution, so that c1 + c2 + ...+ cni = t, c′is represent cycle times.

The procedure is repeated n times to generate sample of size n for N(t), (Size of the

simulated data set is fixed as 10000.)

Example 1:Assume that the cycle time of the system is distributed as Gam(1,2) and

the initial strength of the system follow, a mixture of Weibull distribution, 0.2 Weibull(1,2)+

0.8 Weibull(1,6). The strength of the system is assumed to decrease by a fixed value say,

0.001 and the initial stress on the system is fixed as 0.5 throughout the period of observa-

tion. Suppose that we are interested in estimating the value of R(t) at t=50.

Figure 5: Histogram of simulated data sets for initial strength and cycle time

We have simulated observations on cycle time, initial strength, the number of cycles

during (0, t). The parameters are estimated using EM algorithm. Using the estimates of

the parameters we have obtained the value of R(50) as 0.7841. The estimated values of
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Table 1: Estimated values of the parameters
α β1 β2 p1 p2 a k

True Value 1 2 6 0.2 0.8 1 2

MLE 0.9932 2.2781 6.1552 0.2401 0.7599 1.0961 2.2650

parameters are given in Table 1. The histogram of initial strength and cycle time data

along with fitted density curve is given in Figure 5.

Table 2 gives values of R(t) for different values of time points and different values of

parameters of cycle time and strength distributions.

Table 2: Estimated values of the parameters
Cycle time Strength a0 x0 t R(t)

G(0.1,5) 0.2W(0.2,0.6)+0.8W(0.2,2) 0.02 0.05 10 0.2974

25 0.2963

50 0.2914

75 0.2865

100 0.2822

G(0.3,2) 0.7W(0.1,0.6)+0.3W(0.1,0.3) 0.1 0.03 10 0.5855

25 0.5463

50 0.5109

75 0.4891

100 0.4733

Example 2.

Assume that cycle time is distributed as Gam(1.5,4), the initial strength of the system

follow a finite mixture of Weibull distribution say, 0.9 ∗W (1, 5) + 0.1 ∗W (1, 3) and the

initial stress on the system follow a finite mixture of Weibull distribution say, 0.2W (1, 3)+

0.8W (1, 7). The strength of the system is assumed to decrease by a fixed value 0.002. and

the stress is increase by a fixed value 0.004, after each run of the system. Suppose that

we are interested in estimating the value of R(t) at t=15. We have simulated observations

on cycle time, initial strength, initial stress and the number of cycles during (0, t). The

parameters are estimated using EM algorithm. and estimated the values of the parameters

of stress, strength and cycle time distributions based on simulated data set using EM

algorithm. The estimated values of parameters are given in Table 3. The histogram of

initial strength, initial stress and cycle time corresponding to the simulated data along

with fitted density curve is given in Figure 6. Using the estimates of the parameters we

have obtained the value of R(15) as 0.9703.

Table 4 gives values of R(t) for different values of time points and different values of

parameters of cycle time, initial stress and initial strength distributions.
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Figure 6: Histogram of simulated data with fitted density curve

Table 3: Estimated values of the parameters
α θ1 θ2 p1 p2 β1 β2 π1 π2 a k

Actual Value 1 5 3 0.2 0.8 3 7 0.2 0.8 1.5 4

MLE 1.0318 3.4359 2.1848 0.1005 0.8995 3.3172 7.7769 0.2411 0.7589 1.5539 4.0789

Table 4: Estimated values of the parameters
Cycle time Stress and Strength a0 b0 t R(t)

Gam(0.5,2) Strength: 1 0.02 10 0.1964

0.8W(0.3,0.6)+0.2W(0.3,2) 25 0.1548

50 0.1336

Stress: 75 0.1231

0.3W(0.3,1)+0.7W(0.3,0.3) 100 0.1161

Gam(0.5,1) Strength: 0.001 0.008 10 0.9984

0.6W(5,0.3)+0.4W(5,2) 25 0.9980

50 0.9978

Stress: 75 0.9863

0.3W(5,0.1)+0.7W(5,0.2) 100 0.9491
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Abstract

Gas analyzers are used by regulating authorities for checking and measuring emission

levels of carbon monoxide and other such polluting gases in vehicles. The company was

in the process of overhauling its existing model. It had become necessary Government of

India imposing strict regulations on the emission level by vehicles. With this objective,

the study was framed to design exhaust gas analyzer of Fit and Forget Quality, qualifying

all customer and regulatory requirements. The existing product was subjected to a Failure

Mode and Effect Analysis (FMEA) for identifying the weaknesses if any in the present

design. At the same time, the team thought that it would be appropriate to understand

and include the customer perceptions in the new design. Accordingly an exhaustive cus-

tomer survey was initiated and conducted. The evaluation of the current design in the

light of voice of customer (VOC) revealed that improvement was necessary in several ar-

eas. Based on the analyses, a House of Quality Matrix was developed and deployed. The

prototype was assembled and tested for performance. The test reports showed favorable

results validating product expectations. Also, other tests like vibration testing, endurance

test etc. were performed on the product and the performance was found satisfactory. The

new product was subsequently launched countrywide.

Key words: Product Development, FMEA, Voice of customer, Quality function deployment.

1. Introduction

Exhaust gas analyzers are indispensable service instruments in the workshop, necessary

for optimal mixture adjustment and effective trouble shooting on the engine upon analyzing
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the exhaust emission gas from the vehicle. The Unit consists of a Gas Bench, which is for

measuring the amount of carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons

present in exhaust emission by NDIR (Non-Dispersive Infra Red method) and an Oxygen

Sensor and Nox sensor to measure the amount of Oxygen and Nitrogen. The Unit consists

of three filters, two Pumps, One Mini-Electro Valve and a Pressure switch. The Pumps

used to transfer the filtered exhaust gas to gas bench and to pump out the condensed

water particle from the moisture filter. The Electro-valve is used to switch between the

atmospheric gas and sample gas. The Pressure switch is to identify the leak in the tubings.

The Gas bench has the powerful Microprocessor unit, which processes the pollutants,

measures in the bench and converts to digital values. A graphical LCD is present in the

front panel for clear viewing with backlight.

Operating principle is so easy: simply insert a probe into the exhaust pipe and select

measurement option and press enter key to initiate measurements. Readings appear on a

graphical LCD.The measuring process begins with automatic zeroing and sensitivity cali-

brations. During prolonged testing periods, the analyzer automatically runs intermittent

zero calibrations to ensure accuracy. The attachable sampling unit has a probe with a

pre-filter that fits into all types of exhaust pipes.

The company was in the process of overhauling its existing model. It had become

necessary because of sudden opening in the market with Government of India imposing

strict regulations on the emission level by vehicles. The demand for accuracy and relia-

bility on the measurement is also increasing. The Ministry of Road Transport and State

enforcement authorities have put forth stringent requirement on the supplier of these emis-

sion testing instruments. This company had a product, which was basically meeting the

non-euro requirements. So it was necessary to develop a Euro norms compliant product.

With this objective, the study was framed to design exhaust gas analyzer of Fit and Forget

Quality, qualifying all customer and regulatory requirements.

The remaining part of this article is arranged as follows. A literature review on the

methodology adopted is presented in section 2. In section 3, the details steps involved in

the product design are explained. Concluding remarks including the limitations and future

research directions are presented in section 4.

2. Literature Review

To design a product that meets all the requirements, the design team needs to know

what they are designing and what the end-users expect from it. Quality Function Deploy-

ment (QFD) is a structured technique for solving problems associated with the development

or improvement of any product or service (Akao, 1990). QFD was developed in Japan in
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1966. It consists in translating customer requirements into design characteristics for each

stage of product development (Wasserman, 1993; Glen et al, 1996). By 1972 the power of

the approach had been well demonstrated at the Mitsubishi Heavy Industries Kobe Ship-

yard (Sullivan, 1986). The goal of QFD is to translate often subjective quality criteria into

objective ones that can be quantified and measured and which can then be used to design

and manufacture the product (Mallon and Mulligan, 1993; Shigeru and Akao, 1994). QFD

emphasizes active participation from the customer and helps integrate the engineering ef-

forts of teams with skills from multiple disciplines (Douglas et al, 1995). It uses a series of

product and process matrices to relate customer needs to technical requirements, analyze

their relative importance, and evaluate their technical capabilities (Zeithml et al, 1990;

Cohen, 1995).

Failure mode and effect analysis is a tool that examines potential product or process

failures, evaluates risk priorities, and helps determine remedial actions to avoid identified

problems (AIAG, 2001). The spreadsheet format allows easy review of the analysis. Fail-

ure mode and effect analysis is primarily a quality planning tool. It is useful in developing

features and goals for both products and processes, in identifying critical product/process

factors and designing counter measures to potential problems, in establishing controls to

prevent process errors, and in prioritizing process subunits to ensure reliability (Kmenta

and Ishii, 2004). In FMEA, failures are prioritized according to how serious their conse-

quences are, how frequently they occur and how easily they can be detected (Stamatis,

2003). An FMEA also documents current knowledge and actions about the risks of failures

for use in continuous improvement. FMEA is used during the design stage with an aim to

avoid future failures (Mcdermott et al, 1996).

3. Product Design

The approach adopted for the study was as follows. First, to understand the weak areas

in the design, an FMEA was performed and the weak areas in the design were identified.

This was followed by a VOC data collection and translating it to company requirements.

Finally a prototype was developed and tested.

3.1. Failure Mode Effects and Analysis

The existing product was subjected to a Failure Mode and Effect Analysis in order

to identify the weaknesses in the product. All the functions performed by the gas ana-

lyzer were considered with its potential failures while preparing the FMEA. The FMEA

thus performed is presented in Table1. From the FMEA given in table 1, the following

parts/components emerged as weak areas in the existing design.
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1. Bench

2. Sensor

3. Digital IC relays and crystals

4. Filter

These parts were selected for in depth design analysis, and improvement.

3.2. Voice of Customer (VOC) Analysis

The voice of the customer is the cornerstone of QFD process for product development

(Day, 1996). Once you have identified key customers to be interviewed / surveyed, its

time to gather the customer wants (Hayes, 1992). There are many useful techniques in

gathering customers wants. Which techniques you choose, are based on considerations

such as timing, cost and resources available (Fink and Kosecoff, 1985). The following

approaches are the most popular methods in obtaining customer wants.

Focus groups: Additional insight into customers wants and perceptions can be gained

through use of small groups of eight to twelve people who engage in free flowing discussion.
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Individual Interviews: Focus groups can tend to represent a reinforcement of the ideas

offered by the most vocal members of the group. The wants and perceptions of more quiet
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members may be lost in the process. Individual interviews overcome this weakness and are

an effective method for obtaining insight into the customers wants. This process can be

very effective in getting at the emotional side of the customers purchasing decision.

Listening and watching : A very effective technique used by Japanese is the simple art of

listening / watching. Engineers, managers and others can be stationed at trade shows and

at retail outlets to casually listen to the comments and conversations of the people.

Existing information: Most companies have a variety of information representing the voice

of their customers. Much of these may be negative in the form of complaints, service

call records and letters. However, these are valuable sources of information about the

perception and expectations of the purchasers and should be included in the development

of the voice of the customer (Burchill and Brodie, 1997).

Product designers were involved in surveys and interviews to provide them with the

opportunity to develop a real understanding of the voice of the customer(s).The goal was

to develop a meaningful list of unconstrained root wants. Lot of effort was put to get the

exact words of the customer, develop a list of quotable statements as opposed to one word

service attribute like cost, delivery, or service quality.

The summary finding of the VOC exercise is given in Table 2. The design option

with maximum preference scores were chosen for consideration in the product design.

The evaluation of the current design in the light of VOC revealed that improvement was

necessary in eight areas.

The design options preferred by respondents were compared with the existing product

as well as competitors product. The summary of comparison is given Table 3.

The above findings, highlighted in bold letters, were decided to be incorporated into the

product. This was accomplished by the Quality Function Deployment (QFD) approach.

3.3. The QFD Process

The most critical QFD process is the House of Quality matrix (Hauser and Clausing,

1988). It was accomplished through the following steps.

The Objective: Describes the goal, problem, or objective of the team effort. The customer

plays an important role in defining this objective since it gets to the heart of the problem

to be solved and directly drives the product development. In this case it was to develop a

Gas Analyzer of Fit and Forget quality.

Customer requirements: Determine the prioritized customer requirements for the product
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or service to be delivered. Since trade off decisions always exist, this step ensures that

they favour customer needs and desires to the maximum extent and are not based only on
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whats convenient for the developer (refer Table 2).

Competitive evaluations: Determine how well an organization and its competitors products

and services meet the customers requirements (Table 3).

Technical requirements: Correspond to translation of operational requirements into tech-

nical specification language.

Relationship matrix : Determines the strength of the relationship between the customer

requirements and the technical requirements.

Importance weighting : Compare the strength of the customer requirements, the technical

requirements, and the customer importance information to identify technical requirements

that are most important.

Correlation matrix : Explores the strength of the relationship between pairs of technical

requirements. Weak correlations are traded off to find the best compromise, and strong

correlations are studied to prevent duplication of effort.

Based on the above steps a House of Quality Matrix was developed and deployed. The

Voice of Customer (VOC) data shortlisted as above from table 3 was deployed through

QFD method to company requirements (Refer Table 4).

3.4. Prototype Development

The company engineers further worked on the company requirements as identified in

the QFD matrix and developed a prototype. For example in case of LCD display, the

existing product firmware was modified to incorporate LCD display. This new development

not only delighted the customer by way of easy viewing with graphics. This exercise

involved extensive design review and modification. Similarly the remaining seven VOCs

were worked upon and the product meeting all the government regulations and better

than competitors was developed. The components/ parts requirements were worked out;

specifications were derived and subsequently ordered on the suppliers. The prototype was

assembled and tested for performance. The test reports given in Table 5 show favorable

results, validating product expectations. Also, other tests like vibration testing, endurance

test etc. were performed on the product and the performance was found satisfactory.

Product was successfully launched in the market subsequently.

4. Concluding Remarks

The company was primarily using reaction based approach for up gradation/ modifica-

tion of the existing products. By this methodology they could realize the benefits of VOC
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and QFD in product design and development with maximum speed. The company could

launch the new product precisely made as per VOC at much reduced cycle time. However

the new requirements keep surfacing every now and then. This methodology therefore

must become the basic knowledge for every designer.

The potential benefits of this approach include:

• Customer focused product development. System and product design requirements

and objectives can be traced from customer requirements. This facilitates inclusion

of the Voice of the Customer into the early system design process.

• Shorter system development cycles. Application of QFD helps avoid the need for

fire-fighting during detail system design. Emphasis is placed on a before-the-fact

approach, rather than after-the-fact.
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• Fewer production start-up problems. The proactive approach inherent within the

QFD method involves early consideration of downstream issues pertaining to manu-

facturing, distribution, installation, operation, and sustaining support. This reduces

start-up problems.

The limitation of this study is that as the regulatory requirements for emission in vehicle

changes, the current product may become obsolete after a specified period. Hence a further

research can be conducted for streamlining the method of collection of VOC from the

customer and regulatory requirements and establishing a system for product up gradation

to suit any future requirements.
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Abstract

The correlation coefficient is often used or misinterpreted as the measure of linear as-

sociation. We review the concepts correlation coefficients and studied its properties. We

provide some examples to clear several misconceptions about the correlation coefficients.

The examples are reproduced here with proper references.

Key words: Correlation coefficient, zero covariance, Independence.

1. Introduction

Despite the increasing use of statistical methods in different fields it is noted that

several statistical concepts are still more or less unclear to scientists in other fields. For

examples, in regression analysis, the coefficient of determination, R2 some time misin-

terpreted as strength of the relationship. However, it (squared correlation coefficient) is

simply a measure of how much of the variation measured as the sum of squares of the

Y variable that is accounted for by a mathematical model involving independent vari-

ables. Another misconception is that the correlation between two variables is zero when

the variable are independent. Hence we made an attempt to discuss the properties of the

correlation coefficient in details. We refer to interest readers to Mathai (1998), Zhang

(2007) and Mukhopadhyay (2010) and the references therein.

Before defining correlation coefficients, we starts with some questions that we will be

answered later in this manuscript.

• Correlation zero implies whether the events are independent?

• Correlation tends to one implies whether the relation becomes linear?

• Does covariance equals zero implies correlation equals zero?
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• Does independence implies correlation zero?

Answer to all the questions above is wrong and we discuss this in detail.

2. Correlation coefficients

Let X and Y be two random variables with distribution function F and G, respectively.

We define the covariance between X and Y , as

Cov(X,Y ) = E
(
(X − E(X))(Y − E(Y ))

)
.

Next we give the definition of correlation.

Definition 2.1.

The correlation between X and Y , denoted by ρ, is defined as

ρ =
Cov(X,Y )√

V ar(X).V ar(Y )
, (1)

for all non-degenerate random variables for which the covariance, Cov(X,Y ), and the

variances, V ar(X) and V ar(Y ), exist.

What does ρ really measure? At some extent, this question was answered by Mathai

(1998). Mathai (1998) used the following example to illustrate some of the misconcepts

about the correlation coefficient.

Let X be a real random variable having symmetric distribution. Clearly the odd order

moments are zero. That is, E(X2r+1) = 0, r = 0, 1, .... Let σ2 = V ar(X) = E(X2) and

that σ2 is finite. This assumption is taken to ease the calculation of ρ. Consider a quadratic

relation given by

Y = a+ bX + cX2, (2)

where a, b and c are some real constants. Clearly E(Y ) = a + cσ2. Substituting these

quantities in equation (1) we obtain

ρ =
b√

b2 + c2σ2[E(X4)
σ4 − 1]

, (3)

provided E(X4) < ∞. We can easily see that ρ equal to zero for b = 0. In this case we

have quadratic relationship between X and Y .

We can see that ρ gives a small large positive and negative values for the relation

specified in equations (2). Next we illustrate it. See Mathai (1998) for more details. Let X

be a standard normal variate. Clearly E(X) = 0. Hence the coefficient of kurtosis defined

by E(X4)
(E(X2))2

has value 3. Then using equation (3) we obtain

ρ = ± 1√
1 + 2 c

2

b2

, b 6= 0.
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Then we obtain small and large positive and negative values of ρ when the relationship

between X and Y is specified in the equation (2) and for specific values of a, b and c.

(i) Y = a+X +X2, ρ = 0.58.

(ii) Y = a−X +X2, ρ = −0.58

(iii) Y = a+X + 10X2, ρ = 0.82

(iv) Y = a+ 2X +X2, ρ = 0.07

(v) Y = a− 3X +X2, ρ = −0.90.

Next, we answer to the question, does correlation near one in magnitude implies that

the all points will tends to fall in a straight line? Suppose (X,Y) is a discrete random

vector having joint uniform distribution on the 4 points (−k,−a− ε), (−k,−a+ ε), (k, a−
ε), (k, a+ ε). For these variables E(X) = E(Y ) = 0. V ar(X) = k2, V ar(Y ) = a2 + ε2 and

Cov(X,Y ) = ak. Hence, for a positive k, the correlation coefficient is given by

ρ =
a√

(a2 + ε2)
.

Note that as |a| → ∞ , ρ → 1 for any fixed ε 6= 0. However the points (k, a + ε)

and (k, a − ε) remain 2|ε| units apart. This implies that ρ does not measure the linear

relationship between two random variables. What can we say about the linearity. Using

Cauchy-Schwartz inequality we can say that the relationship between X and Y are linear

if and only if ρ equal to plus or minus one. As soon as ρ is away from plus or minus one,

there could be perfect non-linear relationship between X and Y . All other values of ρ can

not have meaningful interpretation as measure of relationship.

All these discussions highlighted the fact that ρ can not be used as a measure of

association. What ρ really measure. We know that variance can be considered as a

measure of spread of Xi’s from its mean X̄, center of gravity. Can we give a similar

interpretation for ρ as the case of variance? Covariance can be considered as a measure of

spread of the points (Xi, Yi) from the centre (X̄, Ȳ ) . Or it can be views as measure of

angular dispersion between the points (X1, . . . , Xn) and (Y1, . . . , Yn) with the origin shifted

to (X̄, Ȳ . And the correlation coefficient, ρ, can be considered as scale free covariance. See

Mathai (1998) for more discussion on the interpretation of ρ. Next we some examples to

which may help us to remove the misconception related to ρ.

Next we give an example of zero covariance without independence. See Zhang (2007)

for more details. Let X1 and X2 be a sample of two independent observations drawn from

a Bernoulli distribution with parameter p(0 < p < 1). The sample mean and sample

variance in this case is given by

X̄ =
X1 +X2

2
and S2 =

(X1 −X2)
2

2
.

Using the joint probability distribution of X̄ and S2 (derive!), we can find that the third

central moment of X1 is equal to p(1−p)(1−2p). Using an identity connecting the sample



94 Proceedings of NSASSSM-2020

mean and sample variance to the third central moment (see Remark 1 below) we obtain

Cov(X̄, S2) =
p(1− p)(1− 2p)

2
.

From the above identity we observe that Cov(X̄, S2) = 0 for p = 0.5. However, X̄ and

S2 are not independence. This can be verified using the conditional probability of S2 = 0

given X̄ which is given below

Pr(S2 = 0|X̄ = 1) = 1 6= 1/2 = Pr(S2 = 0).

Remark 2.1.

In the above example, we use an identity connecting the sample mean and sample

variance to the third central moment given by

n.Cov(X̄, S2) = E(X − µ)3,

where X̄ and S2 are the sample mean and sample variance based on the observations

X1, . . . , Xn. The proof this identity is given in Zhang (2007). One can use this identity to

study the skewness of random variables.

We end our discussion by reproducing some examples from Mukhopadhyay (2010). This

will help us to understand the concepts of correlation more meaningfully. We next give

examples to answer the question does independent implies zero covariance or correlation?

Consider independent standard normal random variables U1, U2 and define

X = U1 and Y = U−1
2 .

We know that ratio of two independent standard normal random variable has the standard

Cauchy distribution. Hence E(XY ) is not finite, accordingly covariance can not be defined.

Hence X and Y are independent does not implies covariance is zero.

Again, consider independent standard normal random variables U1, . . . , U5 and define

X = U2
1 and Y =

(
U2
2 + U2

3 + U2
4 + U2

5

)−1
.

Clearly X and Y are independent and X and 1/Y follows chi-square distribution with one

and 4 degrees of freedom, respectively. Hence Y follows inverse chi square distribution and

E(Y ) = 1/2. Also E(X) = 1. The distribution of 4XY is F (1, 4) distribution. Hence

E(XY ) = 2/4 = 1/2 giving Cov(X,Y ) = 0. Since V ar(Y ) is not finite ρ is not finite in

this case. This also reiterate the fact that the existence of second moment is important

while defining ρ. What happens when the second moment of X and Y do not exist? Next

section we address this question.
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3. Gini covariance

There are several other correlation coefficients are discussed in literature. For example,

Spearman rank correlation and Kendals τ , etc. Recent times correlation based on Gini

mean difference has received much attention due to its applications in regression and time

series analysis. Especially in time series analysis, it is desirable to allow for heavy tailed

situations by developing concepts and methods that impose only first order moment as-

sumptions. The Gini autocorrelation has great significance due to its potential application

in infinite variance time series analysis. Preliminary work in this direction can be found

Carcea and Serfling (2015).

Let X1 and X2 be two independent and identically distributed random variable having

distribution function F . Gini mean difference(GMD) is defined as

GMD = E|X1 −X2|. (4)

And Gini index is given by

GMD =
E|X1 −X2|

2µ
.

Using the identity |X1 − X2| = 2 max(X1, X2) − X1 − X2 and noting that F 2(X) is the

distribution function of max(X1, X2), the GMD given in (4) can be rewritten as

GMD = 4.Cov(X,F (X)).

It is observed that GMD is four times the covariance between X variate and its rank F .

This paves the way to define Gini covariance between X and Y . Next we define Gini

covariance and correlation.

Definition 3.1. Let (X,Y ) be a bivariate random vector with joint distribution function

FXY . Also let FX and FY be the respective marginal distribution functions. The Gini

covariance between Y and X is defined as

C(Y,X) = 4Cov(Y, FX(X)). (5)

Definition 3.2.

The Gini correlation between Y and X is defined as

ρg(Y,X) =
Cov(Y, FX(X))

Cov(Y, FY (Y ))
. (6)

Definition 3.3. The Gini regression parameter of Y on X is defined as

βg(Y,X) =
Cov(Y, FX(X))

Cov(X,FX(X))
. (7)
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Similarly, one can define the Gini covariance, Gini correlation between X and Y and

Gini regression parameter of X on Y and we denote it as C(X,Y ), ρg(X,Y ) and βg(X,Y )

respectively. Unlike the other correlation coefficients Gini correlation is based on the variate

value of one variable and the ranks of the other variable. And it can be defined in case of

first moments of the random variables are finite.

Note that ρg(X,Y ) 6= ρg(Y,X) in general. If the distribution of (X,Y ) is exchangeable

up to a linear transformation then ρg(X,Y ) = ρg(Y,X). Moreover, if the distribution of

(X,Y ) is bivariate normal, then ρg(X,Y ) = ρg(Y,X) = ρ, where ρ is the Pearson’s correla-

tion coefficient. Under bivariate normal assumption of the random vector (X,Y), βg(Y,X)

reduces to the ordinary least square regression coefficient of Y on X. This parallelism also

motivate researchers to develop alternate theory based on Gini covariance.

4. Concluding remarks

We made an attempt to avoid the confusion about the Pearson correlation coefficient.

The discussion given in this paper reiterate the fact that one must give more care while

using or interpreting ρ. We also discuss an alternate of correlation coefficient, Gini corre-

lation which has numerous application in time series analysis. Some recent work based on

Gini correlation and Gini regression coefficient we refer to Charpentier et al. (2019) and

Shelef and Schechtman (2019).
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Abstract

In this paper, we introduce a new distribution called Burr III-Weibull(BW) distribu-

tion using the concept of competing risk. We derive moments, conditional moments, mean

deviation and quantiles of the proposed distribution. Also the Renyi’s entropy and order

statistics of the distribution are obtained. Estimation of parameters of the distribution is

performed via maximum likelihood method. A simulation study is performed to validate

the maximum likelihood estimator (MLE). A real practical data set is analyzed for illus-

tration.

Key words:Burr III distribution, Weibull distribution, Maximum Likelihood Estimation.

1. Introduction

Burr type III distribution with two parameters was first introduced in the literature

of Burr [1] for modelling lifetime data or survival data. It is more flexible and includes a

variety of distributions with varying degrees of skewness and kurtosis. This distribution

has a wide application in areas of statistical modelling such as forestry Gove et al.[3], me-

teorology Mielke [2], and reliability Mokhlis [7]. Burr type XII distribution can be derived

from Burr type III distribution by replacing X with 1
X . The usefulness and properties of

Burr distribution are discussed by Burr and Cislak [8] and Johnson et al. [9].

The hazard function of distributions may include one or more of the following be-

havioural patterns; increasing, decreasing or constant shapes. Thus, they cannot be used

to model lifetime data with a bathtub shaped hazard function, such as human mortality

and machine life cycles. For last few decades, statisticians have been developing various
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extensions and modified forms of the Weibull distribution and other related models. The

two-parameter, flexible Weibull extension of Bebbington et al. [4] has a hazard function

that can be increasing, decreasing or bathtub shaped. Zhang and Xie [5] studied the

characteristics and application of the truncated Weibull distribution, which has a bathtub

shaped hazard function. A new modified Weibull distribution by Saad and Jingsong [6]

considered an increasing and a bathtub shaped hazard function.

The cumulative distribution function(cdf) and probability density function(pdf) of the

weibull distribution are given by,

FW (x;λ, β) = 1− e−(x/λ)β , x ≥ 0, λ > 0, β > 0 (1)

fW (x;λ, β) =
β

λ

(x
λ

)β−1
e−(x/λ)β (2)

where λ and β are the scale and shape parameters. The cumulative distribution(cdf) and

probability density function(pdf) of the BurrIII distribution is given by,

GB(x; c, k) = (1 + x−c)−k, x ≥ 0, k > 0, c > 0 (3)

gB(x; c, k) = ckx−c−1
(
1 + x−c

)−k−1
(4)

where c and k are shape parameters.

2. Burr III-Weibull Distribution

The reliability function of the new distribution, say Burr III Weibull(BW) distribu-

tion, can be constructed by combining the corresponding reliability functions of Burr III

and Weibull distributions. The resulting reliability function, the cumulative distribution

function and the probability density function are given by,

F̄BW (x; c, k, λ, β) =
(

1−
(
1 + x−c

)−k)(
e−(x/λ)β

)
; c, k, λ, β > 0 (5)

FBW (x; c, k, λ, β) = 1−
(

1− (1 + x−c)−k
)(

e−(x/λ)β
)

(6)

for c,k,λ,β > 0.

fBW (x; c, k, λ, β) = e−(x/λ)β
[
ck
(
1 + x−c

)−k−1
x−c−1 +

β

λβ
xβ−1

(
1−

(
1 + x−c

)−k)
]
(7)

for c, k, λ, β > 0. The hazard rate h(x) and reverse hazard rate r(x) are given respectively

as,

h(x) =
ck(1 + x−c)−k−1x−c−1 + β

λβ
xβ−1(1− (1 + x−c)−k)

1− (1 + x−c)−k
(8)

T (x) =
e−(x/λ)β [ck(1 + x−c)−k−1x−c−1 + β

λβ
xβ−1(1− (1 + x−c)−k)]

1− [1− (1 + x−c)−ke−(x/λ)β
(9)
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Figure 1: Plot for probability density functions of the BurrIII-Weibull distribution.

Figure 2: Plot for hazard rate functions of the BurrIII-Weibull distribution.
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The plots of the probability and hazard rate functions of BW distribution for selected

values of parameters are displayed in Figure 1 and Figure 2. Figure 1 shows that the

BW distribution can be decreasing, approximately symmetrical and right skewed whereas

Figure 2 reflects the monotonic behaviour of the hazard function for different values of

parameters.

3. The Statistical Properties

In this section, some of the statistical properties of BW distribution such as quantile

function, moments and order statistics are derived.

3.1 Quantile Function

The quantile function has a number of important applications, for example, it can be

used to obtain the median, skewnes and kurtosis, and can also be used to generate random

variables. The quantile function can be obtained by inverting F̄BW (x) = 1− u, 0 ≤ u ≤ 1,

where

F̄BW (x) =
(

1− (1 + x−c)−k
)(

e−(x/λ)β
)
. (10)

Let,
(
1− (1 + x−c)−k

) (
e−(x/λ)β

)
= 1 − u, and the corresponding quantile function is

obtained by solving the non-linear equation,

ln[1− (1 + x−c)−k]−
(x
λ

)β
− ln(1− u) = 0, (11)

using numerical methods. Equation (11) can be used to generate random number. The
quantiles for selected values of the BW distribution parameters are listed in Table 1.

3.2 Moments

Moments can be used to study the most important features and characteristics of a

distribution such as central tendency, dispersion, skewness, kurtusis etc. The rth moment

of BW distribution is given by,

E(Xr) =

∫ ∞

0
xrf(x)dx

=

∫ ∞

0
xre−(x/λ)β

[
ck(1 + x−c)−k−1x−c−1 +

β

λβ
xβ−1(1− (1 + x−c)−k)

]
dx

= ck

∫ ∞

0
xr−c−1(1 + x−c)−k−1e−(x/λ)βdx+

β

λβ

∫ ∞

0
xr+β−1e−(x/λ)βdx

− β

λβ

∫ ∞

0
xr+β−1(1 + x−c)−ke−(x/λ)βdx.
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Table 1: BW quantile for selected values

(c,k,λ,β)

u (3,1,2,0.4) (0.1,1.7,1,1) (1.8,1.3,0.6,3) (3,0.1,0.7,0.5) (0.5,1.2,1,0.8)

0.1 0.00720 0.00007 0.24762 0.00023 0.014564

0.2 0.04698 0.00776 0.32549 0.00202 0.04755

0.3 0.14851 0.07691 0.38578 0.00705 0.09955

0.4 0.31794 0.20024 0.43923 0.01750 0.17508

0.5 0.50091 0.36225 0.49027 0.03678 0.28234

0.6 0.67537 0.56928 0.54192 0.070287 0.43596

0.7 0.85894 0.84254 0.59757 0.12815 0.66495

0.8 1.08687 1.2336 0.66279 0.23202 1.03706

0.9 1.46385 1.90969 0.75279 0.44542 1.78102

Let

A = ck

∫ ∞

0
xr−c−1(1 + x−c)−k−1e−(x/λ)βdx,

B =
β

λβ

∫ ∞

0
xr+β−1e−(x/λ)βdxand

C =
β

λβ

∫ ∞

0
xr+β−1(1 + x−c)−ke−(x/λ)βdx.

Then

E(Xr) = A+B − C. (12)

Consider,

A = ck

∞∑

m=0

(−1)m

λmβm!

∫ ∞

0

(
1 + x−c

)−k−1
xr+mβ−c−1dx,put u = (1 + x−c)−1 ,

= ck
∞∑

m=0

(−1)m

λ(mβ)m!

∫ ∞

0
uk+ r

c
+mβ

c
−1(1− u)1− r

c
−mβ

c
−1du

= ck
∞∑

m=0

(−1)m

λ(mβ)m!
B

(
k +

r

c
+
mβ

c
, 1− r

c
− mβ

c

)
(13)
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Table 2: BW moments for selected values (c, k, λ, β)

Moments (5,2.5,0.5,1.5) (1,1,0.2,0.9) (2,3,0.4,0.8) (3,1.2,0.8,1.5) (0.4,0.2,1,2)

µ
′
1 0.44431 0.17564 0.21448 0.60806 0.14926

µ
′
2 0.28101 0.06958 0.12327 0.50286 0.14075

µ
′
3 0.21902 0.04434 0.12371 0.51011 0.17208

µ
′
4 0.19687 0.03965 0.18929 0.60844 0.24533

µ
′
5 0.19695 0.04618 0.41159 0.83411 0.39184

µ
′
6 0.21481 0.06674 1.20954 1.29465 0.68564

SD 0.28913 0.19680 0.27797 0.36486 0.34419

CV 0.65073 1.12047 1.29601 0.60003 2.30597

CS 0.82234 2.42891 2.98560 0.87391 2.83748

Ck 3.37007 12.34781 18.5636 4.12879 11.39373

B =
β

λβ

∫ ∞

0
xr+β−1e−(x/λ)βdx

=
β

λβ
λr+β

β
Γ

(
r + β

β

)
, using generalised gamma distribution (14)

C =
β

λβ

∞∑

t=0

(−1)t
(
k + t− 1

t

)∫ ∞

0
xr+β−ct−1e−(x/λ)βdx

=
∞∑

t=0

(−1)t
(
k + t− 1

t

)
λr−ctΓ

(
r + β − ct

β

)
(15)

Substituting (13), (14) and (15) in (12), we get,

E(Xr) = ck
∞∑

m=0

(−1)m

λ(mβ)m!
B

(
k +

r

c
+
mβ

c
, 1− r

c
− mβ

c

)
+ λrΓ

(
r

β
+ 1

)

−
∞∑

t=0

(−1)t
(
k + t− 1

t

)
Γ

(
r + β − ct

β

)
λr−ct where r < c,mβ < c. (16)

Where B (a, b) =
∫ 1

0 t
a−1(1 − t)b−1dt is the beta function and

∫∞
0 xd−1e−(x/a)pdx =

Γ
(
d
p

)

p

ad

is generalised gamma function. The moment generating function of the BW distribution

is given by, E
(
etY
)

=
∑∞

i=0
ti

i!E
(
Y i
)

where E
(
Y i
)

is given above.

The first six moments (µ
′
1, µ

′
2, µ

′
3, µ

′
4, µ

′
5, µ

′
6), standard deviation (SD), coefficient of

variation (CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) for different

selected values of the BW distribution parameters are listed in Table 2.

3.3 Conditional Moments

The rth conditional moment is defined as E(Xr/X > t). The rth conditional moment
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of the BW distribution is given by,

E(Xr/X > t)

=
1

F̄ (t)

∫ ∞

t
xrf(x)dx

=
1

F̄ (t)

∫ ∞

t
xre−( xλ)

β
(
ck
(
1 + x−c

)−k−1
x−c−1 +

β

λβ
x(β−1)

(
1−

(
1 + x−c

)−k)
)
dx

=
1

F̄ (t)

∫ ∞

t
ck
(
1 + x−c

)−k−1
xr−c−1e−( xλ)

β

dx+
1

F̄ (t)

β

λβ

∫ ∞

t
xr+β−1e−( xλ)

β

dx

− 1

F̄ (t)

β

λβ

∫ ∞

t

(
1 + x−c

)−k
e−( xλ)

β

xr+β−1dx.

Let

A =

∫ ∞

t
ck
(
1 + x−c

)−k−1
xr−c−1e−( xλ)

β

dx,

B =
β

λβ

∫ ∞

t
xr+β−1e−( xλ)

β

dx,

C =
β

λβ

∫ ∞

t

(
1 + x−c

)−k
e−( xλ)

β

xr+β−1dx.

Then

E(Xr/X > t) =
1

F̄ (t)
(A+B − C) . (17)

Consider

A = ck

∞∑

m=0

(−1)m

λmβm!

∫ ∞

t

(
1 + x−c

)−k−1
xr+mβ−c−1dx,put u =

(
1 + x−c

)−1
,

= k
∞∑

m=0

(−1)m

λmβm!

∫ 1

(1+t−c)−1

uk+ r
c
+mβ

c
−1 (1− u)1− r

c
−mβ

c
−1 du

= k
∞∑

m=0

(−1)m

λmβm!
B(1+t−c)−1

(
k +

r

c
+
mβ

c
, 1− r

c
− mβ

c

)
(18)

B =
β

λβ

∫ ∞

t
xr+β−1e−( xλ)

β

dx, let u =
(x
λ

)β

= λr
∫ ∞

( t
λ

)β
u

1+ r
β
−1
e−udu

= λrΓ

((
r

β
+ 1

)
,

(
t

λ

)β)
(19)
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C =
β

λβ

∞∑

p=0

(−1)p
(
k + p− 1

p

)∫ ∞

t
xr+β−cp−1e−( xλ)

β

dx

= λr−cp
∞∑

p=0

(−1)p
(
k + p− 1

p

)∫ ∞

( tλ)
β
u

1+ r
β
− cp
β
−1
e−udu

= λr−cp
∞∑

p=0

(−1)p
(
k + p− 1

p

)
Γ

(
r − cp
β

+ 1,

(
t

λ

)β)
(20)

Substituting (18), (19), (20) in (17), we get,

E (Xr/X > t) =
1
¯F (t)

(
k
∞∑

m=0

(−1)m

λmβm!
B(1+t−c)−1

(
k +

r

c
+
mβ

c
, 1− r

c
− mβ

c

))

+
1
¯F (t)

(
λrΓ

((
r

β
+ 1

)
,

(
t

λ

)β))

− 1
¯F (t)



∞∑

p=0

(−1)p
(
k + p− 1

p

)
λr−cpΓ

(
r − cp
β

+ 1,

(
t

λ

)β)

 (21)

3.4 Mean Deviation

The amount of scatter in a population is measured to some extent by the totality of

deviations from the mean and median. These are known as mean deviation about mean

and as mean deviation about median and are defined as,

δ1(x) =

∫ ∞

0
| x− µ | fBW (x)dx and δ2(x) =

∫ ∞

0
| x−M | fBW (x)dx

respectively where µ = E(X) and M=Median(X) denote the median. The measures δ1(x)

and δ2(x) can be calculated using the relationships,

δ1(x) = 2µFBW (µ)− 2µ+ 2

∫ ∞

µ
xfBW (x)dx (22)

δ2(x) = −µ+ 2

∫ ∞

M
xfBW (x)dx (23)

respectively. When r = 1 we get the mean µ = E(X). Note that T (µ) =
∫∞
µ xfBW (x)dx
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and T (M) =
∫∞
M xfBW (x)dx, where

T (µ) =

∫ ∞

µ
xf(x)dx

= k

∞∑

m=0

(−1)m

λmβm!
B(1+µ−c)−1

(
k +

1

c
+
mβ

c
, 1− 1

c
− mβ

c

)
+ λΓ

(
1

β
+ 1,

(µ
λ

)β)

−
∞∑

p=0

λ1−cp(−1)p
(
k + p− 1

p

)
Γ

(
1− cp
β

+ 1,
(µ
λ

)β)
(24)

similarly,

T (M) =

∫ ∞

M
xf(x)dx

= k
∞∑

m=0

(−1)m

λmβm!
B(1+M−c)−1

(
k +

1

c
+
mβ

c
, 1− 1

c
− mβ

c

)

+ λΓ

(
1

β
+ 1,

(
M

λ

)β)
−
∞∑

p=0

λ1−cp(−1)p
(
k + p− 1

p

)
Γ

(
1− cp
β

+ 1,

(
M

λ

)β)

(25)

Consequently, the mean deviation about the mean and the mean deviation about the

median reduces to

δ1(x) = 2µFBW (µ)− 2µ+ 2T (µ) and δ2(x) = −µ+ 2T (M)

respectively.

3.5 Bonferroni and Lorenz curves

Bonferroni and Lorenz curves have applications not only in economics for the study of

income and poverty, but also in other fields such as reliability, demography, insurance and

medicine. Bonferroni and Lorenz curves for the BW distribution are given by,

B(p) =
1

pµ

∫ q

0
xfBW (x)dx =

1

pµ
[µ− T (q)], and

L(p) =
1

µ

∫ q

0
xfBW (x)dx =

1

µ
[µ− T (q)],
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respectively, where

T (q) =

∫ ∞

q
xfBW (x)dx

= k
∞∑

m=0

(−1)m

λmβm!
B(1+q−c)−1

(
k +

1

c
+
mβ

c
, 1− 1

c
− mβ

c

)

+ λΓ

(
1

β
+ 1,

( q
λ

)β)
−
∞∑

p=0

λ1−cp(−1)p
(
k + p− 1

p

)
Γ

(
1− cp
β

+ 1,
( q
λ

)β)
(26)

and q = F−1(p), 0 ≤ p ≤ 1.

3.6 Order Statistics

The density function fi:m(x) of the ith order statistic for i=1,2,3,...,m from indepen-

dently and identically distributed random variables X1, X2, ..., Xm following BW distribu-

tion is given by,

fi:m(x) =
m!fBW (x)

(i− 1)!(m− i)! [FBW (x)]i−1[1− FBW (x)]m−i

=
m!fBW (x)

(i− 1)!(m− i)!
m−i∑

j=0

(−1)j
(
m− i
j

)
[FBW (x)]j+i−1 (27)

Using the binomial expansion [1 − F (x)]m−i =
∑m−i

j=0

(
m−i
j

)
(−1)j [F (x)]j and the pdf and

cdf of BW distribution in (27) we have,

fi:m(x) =
m!fBW (x)

(i− 1)!(m− i)!
m−i∑

j=0

(−1)j
(
m− i
j

)(
1−

[
1−

(
1 + x−c

)−k]
[
e−( xλ)

β
])j+i−1

=

m−i∑

j=0

(−1)j
m!

(i− 1)!(m− i− j)!(j)!

(
1−

[
1−

(
1 + x−c

)−k]
[
e−( xλ)

β
])j+i−1

× e−( xλ)
β
(
ck
(
1 + x−c

)−k−1
x−c−1 +

β

λβ
x(β−1)

(
1−

(
1 + x−c

)−k)
)

The pdf of the 1st and nth order statistic is given by,

f1:m(x) =
m−1∑

j=0

(−1)j
m!

(m− 1− j)!(j)!

(
1−

[
1−

(
1 + x−c

)−k]
[
e−( xλ)

β
])j

× e−( xλ)
β
(
ck
(
1 + x−c

)−k−1
x−c−1 +

β

λβ
x(β−1)

(
1−

(
1 + x−c

)−k)
)

(28)

fn:m(x) =

m−n∑

j=0

(−1)j
m!

(n− 1)!(m− n− j)!(j)!

(
1−

[
1−

(
1 + x−c

)−k]
[
e−( xλ)

β
])j+n−1

× e−( xλ)
β
(
ck
(
1 + x−c

)−k−1
x−c−1 +

β

λβ
x(β−1)

(
1−

(
1 + x−c

)−k)
)

(29)
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4. Renyi’s Entropy

In this section, Renyi’s entropy of the BW distribution is derived. An entropy is a

measure of uncertainty or disorder of a random variable. Renyi’s entropy is an extension

of Shannon’s entropy. In the case of BW distribution Renyi’s entropy is defined to be

IR(v) =
1

1− v ln

(∫ ∞

0
[fBW (x; c, k, λ, β)]vdx

)
, v 6= 1, v > 0.

Renyi’s entropy tends to Shannon’s entropy as v → 1. Note that [f(x; c, k, λ, β)]v = fvBW (x)

can be written as,

fvBW (x) = e−v(x/λ)β
[
ck
(
1 + x−c

)−k−1
x−c−1 +

β

λβ
xβ−1

(
1−

(
1 + x−c

)−k)
]v

Using the expansions,

e−x =
∞∑

j=0

(−1)jxj

j!
, (x+ y)n =

n∑

p=0

nCpx
n−pyp, (1− x)p =

p∑

m=0

pCm(−1)mxm.

fvBW (x) =

∞∑

j=0

(−1)jvj(xλ)βj

j!

[
βxβ−1

λβ
(1− (1 + x−c)−k) + kcx−c−1(1 + x−c)−k−1

]v

=
∞∑

j=0

(−1)jvjxβj

λβjj!

v∑

p=0

(
v

p

)(
kcx−c−1(1 + x−c)−k−1

)v−p(βxβ−1

λβ
(1− (1 + x−c)−k)

)p

=
∞∑

j=0

v∑

p=0

p∑

w=0

(−1)j+wvjβp

λ(βj+pβ)j!
(kc)v−p

(
v

p

)(
p

w

)
xβj+cp+p−cv−v+pβ−p

× (1 + x−c)kp+p−kv−v−kw.

Now,
∫ ∞

0
fvBW (x)dx =

∞∑

j=0

v∑

p=0

p∑

w=0

(−1)j+wvjβp

λ(βj+pβ)j!
(kc)v−p

(
v

p

)(
p

w

)

×
∫ ∞

0
xβj+cp+p−cv−v+pβ−p(1 + x−c)kp+p−kv−v−kwdx.

Put u = (1 + x−c)−1 ,
∫ ∞

0
fvBW (x)dx =

∞∑

j=0

v∑

p=0

p∑

w=0

(−1)j+wvj βp

λ(βj+pβ) j!
(kc)v−p

(
v

p

) (
p

w

)
1

c

×
∫ ∞

0
ua−1(1− u)b−1du

=
∞∑

j=0

v∑

p=0

p∑

w=0

(−1)j+w vj βp

λ(βj+pβ) j!
(kc)v−p

(
v

p

) (
p

w

)
1

c
×B(a, b),
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where

a =
1

c
(pβ + βj + cp− cv − v) +

1

c
− kp− p+ kv + v + kw,

b =
1

c
(cv + v − pβ − βj − cp)− 1

c
.

Then,

IR(v) =
1

1− v ln



∞∑

j=0

v∑

p=0

p∑

w=0

(−1)j+w vj βp

λ(βj+pβ) j!
(kc)v−p

(
v

p

) (
p

w

)
1

c
B(a, b)


 , (30)

for v 6= 1 abd v > 0.

5. Method of Maximum Likelihood Estimation

The most useful parametric estimation method is the maximum likelihood method. Let

x1, x2, ....xn be a random sample of size n from BW distribution. Then the log likelihood

function is given by,

l(c, k, λ, β) =

n∑

i=1

ln[f(xi, c, k, λ, β)] (31)

The log likelihood for a single observation is given by,

l(c, k, λ, β) = −
(x
λ

)β
+ ln(ck(1 + x−c)−k−1x−c−1 +

β

λβ
xβ−1[1− (1 + x−c)−k]) (32)

The maximum likelihood estimates can be obtained by solving the following the equations

simultaneously,
∂l(c,k,λ,β)

∂c = 0, ∂l(c,k,λ,β)
∂k = 0, ∂l(c,k,λ,β)

∂λ = 0, ∂l(c,k,λ,β)
∂β = 0 where

∂l(c,k,λ,β)
∂c =

kλβ
(
−cx−c−1 lnx(1+x−c)

−k−1−cx−2c−1(−k−1)(1+x−c)−k−2 lnx+x−c−1(1+x−c)−k−1
)
−kβx−c+β−1(1+x−c)−k−1 lnx

λβckx−c−1(1+x−c)−k−1+ β

λβ
xβ−1[1−(1+x−c)−k]

∂l(c,k,λ,β)
∂k =

ckx−c−1(1+x−c)−k−1−cx−c−1(1+x−c)−k−1 ln(1+x−c)+ β

λβ
xβ−1 ln(1+x−c)(1+x−c)−k

ckx−c−1(1+x−c)−k−1+ β

λβ
xβ−1[1−(1+x−c)−k]

∂l(c,k,λ,β)
∂λ = βx

λ2

(
x
λ

)β−1 −
β2xβ−1λ−β−1

[
1−(1+x−c)

−k]

ckx−c−1(1+x−c)−k−1+ β

λβ
xβ−1[1−(1+x−c)−k]
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Table 3: Simulation Results: Mean Estimates, Bias, MSE.

I II

Sample Size Parameter Mean Bias MSE Mean Bias MSE

n=25

c 0.3843 0.08613 0.02274 5.9395 0.43952 1.79489

k 7.8764 -0.10006 0.22994 5.0623 0.06233 0.68445

λ 1.1783 -0.03159 0.01312 0.89611 -0.00388 0.00353

β 2.32138 0.297792 0.22436 3.6348 0.33482 0.47132

n=200

c 0.3557 0.05578 0.00538 5.7685 0.2685 0.7198

k 7.9368 -0.06318 0.06149 5.06035 0.06035 0.12072

λ 1.1776 -0.02231 0.00211 0.8961 -0.0038 0.0003

β 2.2158 0.21584 0.05967 3.5156 0.2156 0.0854

n=400

c 0.3538 0.05388 0.004074 5.7476 0.2476 0.2950

k 7.9723 -0.02077 0.003812 5.0564 0.05644 0.03913

λ 1.1769 -0.02184 0.00129 0.8964 -0.0035 0.00019

β 2.2105 0.210585 0.050837 3.5054 0.20548 0.05793

n=600

c 0.3534 0.05343 0.003653 5.6836 0.1836 0.1939

k 7.9823 -0.01765 0.001241 5.0501 0.05018 0.03712

λ 1.1767 -0.02158 0.00098 0.8963 -0.0034 0.00014

β 2.2057 0.20573 0.046781 3.5039 0.2039 0.0533

∂l(c,k,λ,β)
∂β = −

(
x
λ

)β
ln
(
x
λ

)
+

[1−(1+x−c)]
−k

[λ2(xβ−1+βxβ−1log(x)(x))−βxβ−1λβ lnλ]
(λβ)2

[
ckx−c−1(1+x−c)−k−1+ β

λβ
xβ−1[1−(1+x−c)−k]

]

The total log likelihood function based on random sample of n observations x1, x2, ....xn
drawn from BW distribution is given by l∗ =

∑n
i=1 l(c, k, λ, β) where l(c, k, λ, β) is given

by equation (32). Owing to the complexity of these equations, the MLEs does not have

an analytical expression. However, one can use standard statistical software to solve those

equations (e.g., Mathematica, R, etc.). We make use of R software to carry out this study.

6. Simulation

The accuracy and performance of the BW distribution is investigated by conducting two

simulations for different parameter values and sample sizes. The simulations were repeated

N = 1000 times each with sample sizes n = 25, 50, 200, 400, 600 and the true parameters

values I : c = 0.3, k = 8, λ = 1.2, β = 2 and II : c = 5.5, k = 5, λ = 0.9, β = 3.3. Three

quantities were computed in this simulation study: the mean, bias and mean-square error
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(MSE). The mean estimate, bias and mean-square error of the MLE ε̂ of the parameter

c, k, λ, β are respectively given by

Mean =

∑N
i=1(ε̂i)

N
, Bias =

1

N

N∑

i=1

(ε̂− ε) and MSE =
1

N

N∑

i=1

(ε̂− ε)2.

The mean of MLEs of the BW distribution parameters along with their respective mean

square errors and bias for different sample sizes are listed in Tables 3.

7. Real Applications

This section illustrates the usefulness of the Burr III Weibull distribution using a real

data set. The data set includes 101 observations which represent the failure times of Kevlar

49/epoxy strands which were subjected to constant sustained pressure at the 90 % percent

stress level until all had failed. The data are: 0.01, 0.01, 0.02, 0.02, 0.02,0.03, 0.03, 0.04,

0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18,0.19, 0.20, 0.23,

0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60,0.60, 0.63, 0.65,

0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92,0.95, 0.99, 1.00,

1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18,1.20, 1.29, 1.31, 1.33, 1.34,1.40, 1.43, 1.45,

1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81,2.02, 2.05, 2.14,

2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

We have fitted the proposed Burr III Weibull distribution (BW) to the data set and

compared the proposed distribution with Weibull distribution and Burr III distribution.

The values of the estimated parameters, Akaike Information Criterion (AIC), Bayesian

Information Criterion (BIC) and Consistent Akaike Information Criterion (AICC) values

for the corresponding data are provided in Table 4. The BW distribution is a better model

as compared to the Burr III model. We conclude that the Burr III-Weibull distribution

can be comparable to the Burr III and Weibull models.

8. Conclusion

A new distribution called Burr III-Weibull(BW)distribution is proposed and its prop-

erties are studied. The BW distribution possesses increasing, decreasing and upside-down

bathtub shaped failure rate function. We derived the moments, conditional moments, mean

deviation, quantiles, Bonferroni and Lorentz curve etc. of the proposed distribution. Order

statistics and Renyi’s entropy of the proposed distribution are also obtained. Estimation

of the parameters of the distribution is performed via maximum likelihood method. A sim-

ulation study is performed to validate the maximum likelihood estimator (MLE). Finally,
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Table 4: Comparison of Maximum Likelihood Estimates.

Model
MLE

Log-Liklyhood AIC BIC AICC
Parameters Estimates

BurrIII c 2.3858890 -98.66771 205.3354 215.7959 205.7521

-Weibull k 2.4533820

λ 1.7572900

β 0.6791234

BurrIII c 1.8321566 -106.6097 217.2194 222.4497 217.3419

k 0.5343506

Weibull λ 0.9899448 -102.9768 209.9536 215.1839 210.0761

β 0.9258876

the BW distribution is fitted to real data sets in order to illustrate its applicability and

usefulness.
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Abstract

Different models were suggested for the viral load in Human Immunodeficiency Virus

- HIV treatment. This paper discuss HIV replication model as non negative replication.

That is the viral load is non-negative integer valued function. A new model approach

using INAR(1) is attempted regarding this. Here we are using INAR(1) by considering

the replication as a counting process. The estimates of INAR(1) is done by using Maxi-

mum Likelihood Estimate and Conditional Least square methods. A comparison is also

done between these estimates. Here we check the efficiency of estimates based on the both

methods. Simulations were done for arbitrary values of parameters.

Key words: HIV treatment, INAR(1) model, Maximum Likelihood Estimate, Conditional Least

Square Methods.

1. Introduction

The human immunodeficiency virus, or HIV weakens ones Immune system so it can’t

fight off common germs, viruses, fungi, and other invaders. It is the virus that causes AIDS,

Acquired Immune Deficiency Syndrome. Someone with HIV can get sick from things that

do not usually affect people, and people with AIDS tend to get certain uncommon diseases

and illnesses. HIV attacks and destroys a type of white blood cell: the CD4 cell, also

called the T-cell. Its job is to fight disease. Acquired immune deficiency syndrome (AIDS)
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is the final stage of human immunodeficiency virus (HIV) infection [5, 8]. HIV begins its

life cycle when it binds to a CD4 receptor and one of two co-receptors on the surface of a

CD4+ T lymphocyte. Infected T lymphocytes are eliminated with a half-life of 2-4 days

from the blood of an HIV-infected person by cytotoxic HIV components. But HIV uses

proteins in the cell to make a copy of itself and then kills the cell. This can go on for 10

years or more without having any symptoms. AIDS is the later stage of HIV infection.

When immune system has a very low level of CD4 cells, one cannot fight off things that

most people would not get sick from. People with HIV are said to have AIDS when they

get certain infections or cancers, called AIDS-defining illnesses, or when their CD4 count

in a blood test is less than 200. HIV is also defined by numerous opportunistic infections

and cancers that occur in the presence of HIV infection.

Antiretroviral Therapy (ART) effectively prevents HIV disease progression. A low

level viral replication persists during ART. A stable viral replication count study prior to

initiating treatment will help the patient and pattern of treatment. Understanding the

mechanisms that maintain the HIV on ART is vital to developing strategies to eradicate

the infection and / or to prevent viral replication. The viral replication is well suppressed

on ART for 2 to 13 years. To determine if the mechanisms that maintain HIV pro-

viruses in lymph nodes and whether there is ongoing exchange of infected cells, a complete

study of viral replication is needed. These study of analysis is possible to quantify the

rapidity of HIV replication. The viral replication during ART is different for different

people depending on their age, health condition etc. Most individuals infected with HIV

will progress to AIDS, if not treated. However, there is a tiny group of patients who

develop AIDS very slowly or never at all. These patients are called non-progressors and

many seem to have a genetic difference which prevents the virus from attaching to certain

immune receptors. HIV begins its life cycle when it binds to a CD4 receptor and one

of two co-receptors on the surface of a CD4+ T lymphocyte. The replication of HIV

one is a multistage process. Each step is crucial to successful replication and is therefore

potential target of entire retroviral drugs. Step one is infection of suitable host cells. Such

as a CD4+T of lymphocytes. Entry of HIV into the cell requires the presence of certain

receptors on the cell surface. This is called binding or fusion. ART prevents or reduce

this process to a great extend. This paper intended to estimate a general tendency of the

amount of viral replication during this period. The viral replication shows an increasing

tendency. This paper developed by considering count of viral replication as Integer and

pattern of replication follows an exponential distribution. The conclusions of this paper

will help to predict the viral replication count and hence help the health departments to

take necessary precaution steps.
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2. Review of Literature

Statistical analyses and modeling have contributed greatly to our understanding of the

pathogenesis of HIV-1 infection. Various statistical methods, nonlinear mixed-effects mod-

els in particular, have been applied to model the CD4 and viral load trajectories. HIV

infect CD4+T cells which play a central role in immune regulation. Many models de-

veloped for the replication of the virus and mortality of cells occurring in the lymphatic

system [1].

The distribution considered in this paper is supported by Gaver D and P. Lewis (1980)

introduced First order Auto regressive gamma sequences and point process by showing

that there is an innovation process {εn} such that the sequence of random variables {Xn}
generated by the linear, additive first-order autoregressive scheme Xn = ρXn−1 + εn
are marginally distributed as gamma (λ, k) variables if 0 5 p 5 1,[2]. The generalized

new model for pth-order autoregressive processes with exponential marginal distributions

EAR(p) is developed by A. J. Lawrance P. A. W. Lewis (1980), and an earlier model

for first order moving average exponential processes is extended to qth-order, given an

EMA(q) process. A mixed process, EARMA(p,q), incorporating aspects of both EAR(p)

and EMA(q) correlation structures is then developed. The model of order limited to one

is used in this paper according to the situation of HIV replication,[3].

The viral replication pattern shows an integer values only. M. A. ALOSH AND A. A.

ALZAID, King Saud University (1987) derived a simple model for a stationary sequence of

integervalued random variables is referred to as the integervalued autoregressive of order

one (INAR(1)) process. The model is suitable for counting processes in which an element

of the process at time t can be either the survival of an element of the process at time

t1 or the outcome of an innovation process. The correlation structure and the distribu-

tional properties of the INAR(1) model are similar to those of the continuousvalued AR(1)

process. Several methods for estimating the parameters of the model are discussed,[4].

In the simplest and earliest models of viral infection Perelson (2013), Uninfected target

cells- T , Infected cells- I, Free virus-V , Target cells are assumed to be produced at constant

rate λ, Die at rate dT per cell, A simple mass action infection term -βV T . This generates

productively infected cells- I, which are lost at rate δ, larger than dT , to reflect viral effects

in shortening the infected cell lifespan. Finally, free viruses are produced by infected cells

at constant rate p per cell, and are cleared from circulation at rate c per virus.
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dT

dt
= λ− dTT − βV T

dI

dt
= βV T − δI

dV

dt
= pI − cV

This simple model was shown to be able to describe the kinetics of acute HIV infection.

Uninfected cells (T ) can become infected by virus (V ) to generate productively infected

cells (I), long-lived infected cells (M) or latently infected cells (L). Latent infected cells

may divide, which leaks to the productively infected class as latent cells are activated into

cells producing virus. Dashed arrows indicate removal (death) of uninfected and infected

cells, which occur at different rates. Equation (1) in the text considers only the uninfected

cells, productively infected cells and virus. The combination of rug block, the production

of infectious virus V and lead to the production of non-infectious virus.

R. Lakshmajayam and G.Meenakshi (2014) This paper introduces a new model for

HIV replication. It is also designed to find out the HIV count of the succeeding period in

the plasma.[6] R. Lakshmajayam and G.Meenakshi (2015) [7] Explained the determination

of average HIV replication in the blood plasma using truncated logistic model.[6, 7] By

considering law of mass action in the viral replication, in addition to the usual components

of CD4+ , a truncated logistic distribution is suggested. The distribution is also used for

future viral load prediction. Here Viral dynamic model is considered as function of the

infected CD 4 + T cells, Blanket CD4 + T Cells, Lysing CD4+ T cells, Non Infected CD4

+T cells and viral load. The model of HIV replication for the future period in the viral

dynamic study is give by

[P (H2(t)/P (H1(t) > 0] =
BDe

H1(t)
C +A

De
H1(t)
C + 1
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Where H1(t) = Y (t) + R2(t) − ν(t) + e, Y (t) = H(t) − α[X(t)], R2(t) = δ4pR1(t), X(t)

is powerful virus, R1(t)- the number of virus replicated at the current period, h(t)- is

existing virus in the plasma, ν(t) is the number of blanket cell death (cleared viron).

Along with modified function of plasma virus by using the law of mass action that is

H1(t) = [H(t)α(x(t))]δ4pR1(t)− δ2R(t)], where δ2 death rate of blanket CD4+T cells, δ4-

death rate of lysing CD4+T cells, p- the number of virus released from the each lysing

CD4 + T cells, α- rate of powerful virus. And H1(t) = C[H(t)A][B −H(t)], C > 0, where

A = α(x(t)) is existing virus in the plasma, B = δ4pR1(t)-is maximum number of viral

replication at the current period. δ2R(t) is the function of H(t). D is a fixed constant.

Viral replication for various counts and the corresponding probability changes are also

noted in the above mentioned paper. The additions for the paper of Alan S Perelson is

given in the paper of Jessica M. Conwaya,b and Alan S. Perelson (2015). Conditional least

square estimator derived based on the paper of D. M. Simarmata, F. Novkanizaa), and Y.

Widyaningsih (2017). Simulations were done in this paper based on the paper of Ogban,

G.I. and Lebedev, K.A. (2016). Meenakshi and Lakshmi Priya (2017) suggested a new

model as an extension of the above model by considering an additive concept. The viral

load and CD 4+ T count examination is very much expensive experiment which is essential

for the treatment of HIV. The prediction of viral load can be done using the mixed effect

model suggested in the paper. Assuming α probability that virus becomes infectious,

n1, n2, n3- number of cells released from during interval (0, t1), (t1, t2), (t2, t3) respectively.

The predictive distribution of largest HIV replication and corresponding depletion density

is given by

g(x, y) = weν(a/b)νe−y

Where a = (1− τθ), τ2 is the variation among the replication over the period, y = yn, y1 <

y2 < < yn are number of viral replication over the nth period of a HIV infected person,

θ > 0 is the parameter of the exponential distribution of a prior density of parameter µ, the

average viral replication. a And b are from the distribution of the random variable CD4+T

cell depletion, with density function of the form f(x) =
axe−x

bx
with a < b and w =

ey/τ

τd
,

a and b are integers and yn is the largest HIV replication over the period. Considering

above papers, the process of replication is an integer valued one. By analysing the process

pattern of replication, the process can be treated as a renewal process. The patients under

ART had their own replication time in study period which should be modelled by a renewal

process or counting process. The paper of Kuritzkes DR, Perelson AS, Ribeiro RM (2017)

consider the influence of integrate inhibitors also. The nature and pattern study of HIV is

done from the paper of Million Wesenu Demissie, J Biom (2018) which deals with the true

cases of HIV in Uganda. William R Mc Manus, John M Coffin, Mary F Kearney (2019)

worked on the cellular proliferation of HIV in Lymph nodes, which helped in the pattern

of replication of HIV used in this paper.

Assuming that the replications of inter events of intervals are independent, the process



118 Proceedings of NSASSSM-2020

can be considered as a counting process. A counting process is said to have stationary

increments if the distribution of number of events which occur in any interval depends

only on the length of the interval. By studying the characteristics of HIV replications, the

process of replication in inter events of intervals can be considered as a counting process.

Each viral replication constitutes independent counting process. Modelling the replication

series into an first order integer- valued Auto Regressive process [INAR(1)] as the count

data recorded by a non-negative integer (0,1,2,.). The replication of viruses is always

integers. Hence it is convenient if we represent the replication count like integers. Gaver

and Lewis (1980) extended the process by the sequence Xn = ρXn−1 + εn by identifying

the innovation sequence εn in such a manner that for 0 ≤ p ≤ 1. Where, ρ is the rate of

replication (probability of evolution) per virus, Xn is the number of viral replication at time

t = n , {εn} will be a sequence of independently and identically distributed (i.i.d.) random

variables with exponential distribution having parameter 1/µ, as in the case of counting

process. Hence, Exp(1/µ), µ > 0, E(εn) = µ, the average viral production V (εn) = µ2

X0 = ε0

Xn = ρXn−1 with probability ρ

= ρXn−1 + εn with probability 1− ρ

{Xn} have mixed exponential distribution. The process giving rise to the sequence {Xn}
is named as Exponential Auto Regressive Process of First Order EAR(1) [2, 3]. Now,

Xn = ρXn−1 + εn =

∞∑

j=0

ρjεn−j

In this first order Auto regressive process certain assumptions were made as follows

1. The process {Xn} is stationary, as the ratio of time intervals are continuous.

2. {εn} have an exponential distribution.

3. {Xn} the sequence is additive in nature
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2.1 Mean and Variance

E(Xn) = ρE(Xn−1) + E(εn)

= ρE(Xn−1) + µ

E(Xn) =
µ

1− ρ
V (Xn) = ρ2V (Xn−1) + V (εn)

V (Xn) =
µ2

1− ρ2

Xn ∼ Exp[1/
µ

1− ρ ]

3. Maximum Likelihood Estimator

Xn = ρXn−1 + εn

f(X0, X1, X2, X3, Xn) = f(Xn/Xn−1, Xn−2, .X0).f(Xn−1, Xn−2, .X0)

= f(Xn/Xn−1, Xn−2, .X0).f(Xn−1/Xn−2, Xn−3, .X0).f(Xn−2, Xn−3, ..X0).

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

=

n∏

t=1

f(Xt/Xt−1)f(X0)

=
n∏

t=1

µ

1− ρe
− µ

(1−ρ) tf(X0)

=
µn

(1− ρ)n
exp{−

n∑

t=1

µ

(1− ρ)
t}f(X0)

L(Xn, εn) = f(X1, X2, X3, , εn) the joint density function will be same as that above as

Xn is linear function of εn

=
n∏

t=1

f(Xt, εt)
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L(Xn, εn) =
µn

(1− ρ)n
exp{−

n∑

t=1

µ

(1− ρ)
t}f(X0)

logL = n logµ− n log (1− ρ)−
n∑

t=1

µ

(1− ρ)
t+ log f(X0)

= n logµ− n log (1− ρ)− µ

(1− ρ)
.
n(n+ 1)

2
+ log f(X0)

∂logL

∂µ
=
n

µ
− 1

(1− ρ)
.
n(n+ 1)

2

∂2logL

∂µ2
=
−n
µ2

< 0, Maximum

MLE of µ =
2(1− ρ)

(n+ 1)

∂logL

∂ρ
=
−n

(1− ρ)
+

µ

(1− ρ)2
.
n(n+ 1)

2

∂2logL

∂ρ2
=

−n
(1− ρ)2

− 2µn(n+ 1)

2(1− ρ)3
< 0, Maximum

MLE of ρ = 1− (n+ 1)

2
µ

Simulations were done by taking different values for µ and ρ. For different time intervals,

and for different values of µ and ρ, some of the plots are as follows.

4. Estimation using Conditional Least Square Method

The method of estimation using CLS is more suitable than the ordinary MLE method,

since the current value is depending on the previous values [10]. The CLS method is

used to find the parameter estimation by minimizing the square of difference between the

Conditional Expectation of Xt given Xt−1 with assumption εt ∼ Exp(µ) and the series is
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µ (1−ρ)
µ Series 1 Series 2 Series 3 Series 4 Series 5 Series 6

5 0.185 0.153754 0.127786 0.106203 0.088266 0.073358 0.060968

10 0.0925 0.084328 0.076877 0.070085 0.063893 0.058248 0.053102

20 0.04625 0.04416 0.042164 0.040258 0.038439 0.036701 0.035042

30 0.030833 0.029897 0.028989 0.028109 0.027256 0.026428 0.025626

40 0.023125 0.022596 0.02208 0.021575 0.021082 0.0206 0.020129

50 0.0185 0.018161 0.017828 0.017501 0.01718 0.016866 0.016556

60 0.015417 0.015181 0.014949 0.01472 0.014495 0.014273 0.014055

70 0.013214 0.013041 0.01287 0.012701 0.012534 0.012369 0.012207

80 0.011563 0.01143 0.011298 0.011168 0.01104 0.010913 0.010788

90 0.010278 0.010173 0.010069 0.009966 0.009864 0.009763 0.009663

100 0.00925 0.009165 0.00908 0.008997 0.008914 0.008832 0.008751

110 0.008409 0.008339 0.008269 0.0082 0.008131 0.008063 0.007995

120 0.007708 0.007649 0.00759 0.007532 0.007474 0.007417 0.00736

130 0.007115 0.007065 0.007015 0.006965 0.006916 0.006867 0.006818

140 0.006607 0.006564 0.00652 0.006477 0.006435 0.006392 0.00635

150 0.006167 0.006129 0.006091 0.006054 0.006016 0.005979 0.005943

160 0.005781 0.005748 0.005715 0.005682 0.005649 0.005617 0.005584

170 0.005441 0.005412 0.005382 0.005353 0.005324 0.005295 0.005266

180 0.005139 0.005113 0.005086 0.00506 0.005034 0.005009 0.004983
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till t = n, the time interval

E(Xt/Xt−1) = ρXt−1 + µ
n∑

t=1

[Xt − E(Xt/Xt−1)]
2 =

n∑

t=1

[Xt − ρXt−1 − µ]2

∂L

∂µ
= 2.

n∑

t=1

[Xt − ρXt−1 − µ]×−1

∂L

∂µ
= 0, 2.

n∑

t=1

Xt + ρ

n∑

t=1

Xt−1 + nµ = 0

µ =
1

n

n∑

t=1

Xt −
ρ

n

n∑

t=1

Xt−1

∂L

∂ρ
= 0, 2×−

n∑

t=1

XtXt−1 + ρ

n∑

t=1

X2
t−1 + µ

n∑

t=1

Xt−1

ρ =

∑n
t=1XtXt−1 − µ

∑n
t=1Xt−1∑n

t=1X
2
t−1

ρ =

∑n
t=1XtXt−1 − ( 1

n

∑n
t=1Xt − ρ

n

∑n
t=1Xt−1)

∑n
t=1Xt−1∑n

t=1X
2
t−1
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ρ =

∑n
t=1XtXt−1 − 1

n

∑n
t=1Xt.

∑n
t=1Xt−1 − ρ

n(
∑n

t=1Xt−1)
2

∑n
t=1X

2
t−1

Estimate of ρ =

∑n
t=1XtXt−1 − 1

n

∑n
t=1Xt.

∑n
t=1Xt−1∑n

t=1X
2
t−1 − 1

n(
∑n

t=1Xt−1)
2

Estimate of µ =
1

n
[

∑n
t=1Xt

∑n
t=1Xt−12 −

∑n
t=1XtXt−1

∑n
t=1Xt−1∑n

t=1X
2
t−1 − 1

n(
∑n

t=1Xt−1)
2 ]

If the number of viral replication at initial stage is known, the parameters µ and ρ can be

easily derived for the nth time epoch.

5. Conclusion

This paper intended to give a contribution in the direction of viral replication using

INAR(1) process. The main objective of this paper is to propose a new approach to

the viral replication by considering the process as a counting process. Using the distribu-

tion we can find the number of viruses in active position according to the change of time.

CLS estimate also can be used to estimate the viral progress, when we know the previous

or initial number viruses in active position, we can predict the number of viruses when the

duration of time suggested. Both estimates together will help to identify the condition of

patient and help what type of treatment is to be adopted in future.
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Abstract

A data of 30 observations representing the times of failures and running times for

samples of devices from an eld-tracking study of a larger system was considered. The

aim was to find the distribution which better fits the data among the four distibutions,

namely, Gompertz, Gompertz-Makeham, Kumaraswamy Gompertz and Kumaraswamy

Gompertz-Makeham. After choosing possible models, estimates of the parameters for each

distribution are estimated by Maximum Likelihood Estimation. These estimates are then

used to visualize the density functions to get an idea of the fit. The AIC values and the log

likelihood function estimated at the MLEs are computed. After computing these values,

the Kolmogorov-Smirnov test to choose which model fits the best to the data is performed.

Key words: Gompertz distibution,Gompertz-Makeham distribution, Kumaraswamy Gompertz

distribution,Kumaraswamy Gompertz-Makeham distribution.

1. Introduction

Modelling of interrelationship among naturally occurring phenomena is made possible

by the use of distribution function and their properties. Because of this, considerable effort

has been expended in the development of large classes of standard probability distributions

along with relevant statistical methodologies. Here, we discuss about four distributions,

namely, the two-parameter Gompertz distibution, three-parameter Gompertz-Makeham

distribution, four-parameter Kumaraswamy Gompertz distribution and the five-parameter

Kumaraswamy Gompertz-Makeham distribution.
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The Gompertz distribution plays an important role in modeling survival times, human

mortality and actuarial tables. According to the literature, the Gompertz distribution was

formulated by Gompertz (1825) to fit mortality tables. The properties of the Gompertz

distribution have been studied by many authors in recent years. Pollard and Valkovics

(1992) were the first to study this distribution thoroughly. However, their results are true

only in the case when the initial level of mortality is very close to zero. Many authors have

contributed to the studies of statistical methodology and characterization of this model.

Read (1983) discussed about the Gompertz distribution in general. Makany (1991) in-

troduced a theoretical basis for Gompertz’s curve. Rao and Damaraju (1992) discussed

about the new better-than-used and other concepts for this distribution. Franses (1994)

studied about fitting of a Gompertz curve. Chen (1997) developed an exact confidence

interval and an exact joint confidence region for the parameters of the Gompertz distri-

bution. Wu and Lee(1999) discussed the characterization of the mixtures of Gompertz

distributions by conditional expectation of order statistics. Garg et al. (1970) and John-

son et al. (1995) studied the properties of the Gompertz distribution and obtained the

maximum likelihood estimates for the parameters. Saraçoglu et al. (2009) discussed the

stress-strength reliability in Gompertz case. El-Gohary et al. (2013) proposed the gener-

alized Gompertz distribution. Minimol and Thomas (2014) obtained characterization of

Gompertz and inverted Gompertz distributions based on certain properties of generalized

record values. Sebastian (2017) discussed the generalization of Gompertz distribution and

their applications.

A different version of Gompertz distribution which is called Gompertz-Makeham distri-

bution was introduced by Makeham (1860). He introduced a constant (Makeham terms)

that describe the age independent mortality and has received considerable attention in the

literature. The Gompertz-Makeham family has been studied by Bailey(1978) and an ex-

pression using the Lambert W function for the quantile function was given by Jodrá (2009).

The unimodality and the relationship between median value and the mean residual life time

of the Gompertz-Makeham distribution was studied by Norström (1997).

The Kumaraswamy distribution as defined by Poondi Kumaraswamy (1980) has been

identified as a viable alternative to Beta distribution because they both have the same

basic shape properties (unimodal, uniantimodal, increasing, decreasing, monotone or con-

stant). In spite of the fact that the Kumaraswamy distribution was introduced in 1980,

further theoretical research on the distribution was not developed until very recently.

Garg(2008) obtained the distribution of order statistics from Kumaraswamy distribu-

tion. Nadarajah (2008) further contributed to the studies on Kumaraswamy distribu-

tion. Jones(2009) discussed about Kumaraswamy distribution as a beta-type distribu-

tion with some tractability advantages. Cordeiro and Castro(2011)combined the works

of Eugene et al.(2002) and Jones(2009) to construct a new family of generalized distri-
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butions based on the Kumaraswamy distribution. According to Cordeiro and Castro, the

Kumaraswamy-Generalized distribution has an advantage over the class of generalized beta

distributions, since it does not involve any special function. Mitnik (2013) showed that

Kumaraswamy variables exhibit closeness under exponentiation and under linear transfor-

mation and derived an expression for the moments of the general form of the distribution.

The four-parameter Kumaraswamy Gompertz distribution and the estimation of the model

parameters is discussed by Silva et al.(2015). The five-parameter generalized version of the

Gompertz-Makeham distribution called Kumaraswamy Gompertz-Makeham is discussed

by Chukwu and Ogunde(2016). Wang and Yu (2017) studied the point estimation and

derived the interval estimation for the Kumaraswamy distribution and inverse estimators

for the parameters of the Kumaraswamy distribution.

The objective is to study the generalizations of Gompertz distribution and Gompertz-

Makeham distribution. In section 2, we discuss about the four distributions, namely,

Gompertz, Gompertz-Makeham, Kumaraswamy Gompertz and Kumaraswamy Gompertz-

Makeham. The characteristic properties and Maximum Likelihood Estimation of these

distributions are studied. The Kumaraswamy distribution and Kumaraswamy Generalized

distributions are also discussed. In section 3, we compare the four distribution under study

using a real life data. The comparison is done with the help of R software.

2. Gompertz Distribution

In probability and statistics, the Gompertz distribution is a continuous probability distri-

bution, named after Benjamin Gompertz, a British actuary.It was formulated by Gompertz

(1825) in connection with human mortality and actuarial tables. It plays an important

role in modeling survival times, human mortality and actuarial data. It is often applied

to describe the distribution of adult lifespans by demographers. More recently, computer

scientists have also started to model the failure rates of computer codes by the Gompertz

distribution. According to Jaheen (2003), Gompertz distribution has been used as a growth

model, especially in epidemiological and biomedical studies. Gompertz distributions can be

viewed as extensions of the exponential distributions because exponential distributions are

limits of sequences of Gompertz distributions. Like the Weibull, the Gompertz distribution

is characterized by two parameters.

2.1 Characteristic Properties

A continuous random variable X is said to have Gompertz distribution with parameters

a and b if its pdf is given by,

f(x) = beaxe−
b
a
(eax−1) , x > 0 ; a, b > 0 (1)
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where, a is the shape parameter and b is the scale parameter.

Some of the typical Gompertz density functions for different values of a and b = 1 are

depicted in Figure 1. It is quite evident that the Gompertz distribution is a positively

skewed distribution.
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Figure 1: Plots of the probability density function of Gompertz distribution for b = 0.03

and different values of a

If X has a Gompertz distribution with probability density function as in equation (1),

then

Y =
b

a
(eaX − 1)

has a standard exponential distribution.

The cumulative distribution function of Gompertz distribution is,

F (x) = 1− e− ba (eax−1) (2)
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Corresponding survival function is,

S(x) = P (X > x)

= e−
b
a
(eax−1) (3)

Hazard rate function of Gompertz distribution is,

h(x) =
f(x)

S(x)

= beax (4)

The plots of cumulative distibution function and hazard rate function of Gompertz

distribution for different parameter values is shown in Figure 2.
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Figure 2: Plots of cdf and hazard rate function of Gompertz distribution

The hazard rate function of Gompertz distribution increases exponentially over time.

When a→ 0, Gompertz distribution will tend to an exponential distribution with

constant hazard rate. In the pdf of Gompertz distibution, when a < 0 (> 0), the hazard

function decreases (increases) from exp(a), and when a = 0, it reduces to the constant

hazard function of an exponential distribution.

The inverse transform method is the most simple and straightforward procedure to

generate samples drawn from a given probability distribution when its quantile function
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exists in closed form. The quantile function of a continuous random variable is defined as

the inverse of its cumulative distribution function. The quantile function

xp = Q(p) = F−1(p), for 0 < p < 1, of the Gompertz distribution is obtained from (2). It

follows that the quantile function xp is,

xp =
1

a
ln
[
1− a

b
ln(1− p)

]
(5)

In particular the median of the Gompertz distribution can be written as,

Md(x) = Md =
1

c
ln
[
1− a

b
ln(1− 0.5)

]
(6)

If a random variable X is distributed as Gompertz with parameters a and b, then its nth

moment around zero can be expressed as,

E(Xn) =
λe

b
a

a

∫ ∞

1

1

an
e−

b
a
x [ln(x)]ndx (7)

On simplification, we get;

E(Xn) =
n!

an
e
b
a En−11

(
b

a

)
(8)

where,

Ens (z) =
1

n!

∫ ∞

1
[ln(x)]nx−se−zxdx

En(x) =

∫ ∞

1

e−xt

tn
dt ;n > 0, Re(x) > 0

and

E0
s (z) = Es(z),

is the generalized integro-exponential function.

The variance, skewness and kurtosis measures can now be calculated using the following

relations:

V ar(X) = E(X2)− E2(X)

Skewness(X) =
E(X3)− 3E(X)E(X2) + 2E3(X)

V ar
3
2 (X)

Kurtosis(X) =
E(X4)− 4E(X)E(X3) + 6E(X2)E2(X)− 3E4(X)

V ar2(X)
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2.2 Estimation of Statistical Inference

In the view of estimating the parameters of the Gompertz distribution, we employ the

method of the Maximum Likelihood Estimation.

Let x = (x1, x2, ..., xn) be a random sample of ’n’ independently and identically distributed

random variables each having a Gompertz distribution defined in equation (2.). Then, the

likelihood function L(x, a, b) is given by,

L(x, a, b) = bn ea
∑n
i=1 xie−

b
a

∑n
i=1(e

axi−1) (9)

Let L = L(x, a, b).

logL = nlogb+ a

n∑

i=1

xi −
b

a

n∑

i=1

(eaxi − 1) (10)

Differentiating logL with respect to a and b gives;

∂logL

∂a
=

n∑

i=1

xi +
b

a2

n∑

i=1

(eaxi − 1)− b

a

n∑

i=1

eaxixi (11)

∂logL

∂b
=

n

b
− 1

a

n∑

i=1

(eaxi − 1) (12)

The MLEs â and b̂ are obtained by solving the nonlinear equations;

∂logL

∂a
= 0 ,

∂logL

∂b
= 0.

The maximization of log-likelihood function in equation (10) requires numerical meth-

ods. Iterative method such as Newton-Raphson may be used for parameter estimation.

3. Gompertz-Makeham Distribution

Gompertz Makeham distribution was introduced by another British actuary, Makeham.

The fit to actuarial data provided by Gompertz distribution was examined by Makeham

(1860) and he observed with specific examples that the fit could be improved with the

modification now known as the Gompertz-Makeham distribution.

According to Finch (1990), the GompertzMakeham model provides a better fit empir-

ical mortality distribution between the ages 30 and 85 years. The Gompertz-Makeham

distribution gives a very good approximation of real demographic data. This explains why

it is of interest to use the Gompertz-Makeham distribution for different approximations

relating to life length theory. It gives very good approximations to empirical distributions
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of life length not only for human populations but also for differnt biological arts.

The basic reason for making approximations of real demographic data with use of the

Gompertz-Makeham distribution is that there are many different professions that have

great use of these kind of approximations of life table data. One of the professions that

have great use of the Gompertz-Makeham distribution are the insurance companies. The

Gompertz-Makeham distribution would give them better possibilities to determine insur-

ances that better explains the mortality among people for both accidents and natural

deaths and it would be very helpful when the fees of the insurances are decided.

The Gompertz-Makeham distribution isn’t only useful for approximating life lengths for

human populations. It might even be of importance to use it in many different biological

ways, for example, plant biology has great use of the Gompertz-Makeham distribution.

Also, life lengths for different crops are an application where the Gompertz-Makeham

distribution can be of importance to use. The possibility to study life lengths of differnt

crops might even give the possibility to choose a treatment that in some sense raise the

quality of these crops.

3.1 Characteristic Properties

A continuous random variable X is said to have a Gompertz-Makeham distribution

with parameters a, b and λ if its pdf is given by,

f(x) = [λ+ beax]e−λx−
b
a
(eax−1) (13)

where, x > 0 and a, b, λ > 0.

The pdf of Gompertz distribution is represented in Figure 3 using different parameter

values.

The cumulative distribution function of Gompertz-Makeham distribution is given by,

F (x) = 1− e−λx− ba (eax−1) (14)

Corresponding survival function is,

S(x) = P (X > x)

= e−λx−
b
a
(eax−1) (15)

Hazard rate function of Gompertz-Makeham distribution is,

h(x) =
f(x)

S(x)

= [λ+ beax] (16)
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Figure 3: Plots of the probability density function of Gompertz-Makeham distribution for

b = 0.03, λ = 0.03 and different values of a

The plots of cumulative distibution function and hazard rate function of

Gompertz-Makeham distribution for different parameter values is shown in Figure 3.

The Cumulative hazard function of Gompertz-Makeham distribution is,

H(x) = −ln(F (x))

= λx+
b

a
(eax − 1) (17)

A closed-form expression for the quantile function of the Gompertz Makeham distribution

is expressed in terms of the principal branch of the Lambert W function. Thus, the quantile

function of the Gompertz Makeham distribution can be expressed explicitly in terms of

the Lambert W function.

The Lambert W function is defined as the solution to the equation,

W (z)eW (z) = z (18)

where, z is a complex number.
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Figure 4: Plots of cdf and hazard rate function of Gompertz-Makeham distribution

Equation (18) has only one real solution for z ≥ 0, this being W0(z)

(called the principal branch). The quantile function xp = Q(p) = F−1(p),
for 0 < p < 1, of the Gompertz-Makeham distribution is obtained from equation (14). It

follows that the quantile function xp is,

xp =
b

aλ
− 1

λ
ln(1− p)− 1

a
W0

(
b

λ
e
b
λ (1− p)− aλ

)
(19)

where, W0 denotes the principal branch of the Lambert W function.

In particular the median of the Gompertz-Makeham distribution can be written as,

Md(x) = Md =
b

aλ
− 1

λ
ln(1− 0.5)− 1

a
W0

(
b

λ
e
b
λ (1− 0.5)−

a
λ

)
(20)

3.2 Estimation of Statistical Inference:

In the view of estimating the parameters of Gompertz-Makeham distribution, we em-

ploy the method of Maximum Likelihood Estimation.

Let x = (x1, x2, ..., xn) be a random sample of ’n’ independently and identically dis-

tributed random variables each having a Gompertz-Makeham distribution defined in equa-

tion (2.13). Then, the likelihood function L(x, a, b, λ) is given by,

L(x, a, b, λ) =

n∏

i=1

(λ+ beaxi)e−λ
∑n
i=1 xi− ba

∑n
i=1 e

axi−1 (21)
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Let L = L(x, a, b, λ).

logL =

n∑

i=1

log(λ+ beaxi)− λ
n∑

i=1

xi −
b

a

n∑

i=1

(eaxi − 1) (22)

Differentiating logL with respect to a, b and λ gives;

∂logL

∂a
= b

n∑

i=1

xie
axi

λ+ beaxi
+

b

a2

n∑

i=1

(eaxi − 1)− b

a

n∑

i=1

xie
axi (23)

∂logL

∂b
=

n∑

i=1

eaxi

λ+ beaxi
− 1

a

n∑

i=1

(eaxi − 1) (24)

∂logL

∂λ
=

n∑

i=1

1

λ+ beaxi
−

n∑

i=1

xi (25)

The MLEs â, b̂ and λ̂ are obtained by solving the nonlinear equations;

∂logL

∂a
= 0 ,

∂logL

∂b
= 0,

∂logL

∂λ
= 0.

The maximization of log likelihood function in equation (22) requires numerical methods.

Iterative method such as Newton-Raphson may be used for parameter estimation.

4. Kumaraswamy Distribution

The Kumaraswamy distribution introduced by Poondi Kumaraswamy (1980) is a two-

parameter continuous probability distribution with double-bounded support. The Ku-

maraswamy distribution was originally conceived to model hydrological phenomena, and

has been used for this but also for other purposes. It is very similar to the Beta distribu-

tion, and can thus assume a strikingly large variety of shapes and be used to model many

random processes and uncertainties.

Compared to the Beta distribution, the Kumaraswamy distribution has the key advantage

of a closed-form cumulative distribution function. This makes it much better suited than

the Beta distribution for computation-intensive activities like simulation modeling and the

estimation of models by simulation-based methods. However, in spite of the fact that the

Kumaraswamy distribution was introduced in 1980, further theoretical research on the

distribution was not developed until very recently.

Many lifetime distribution models have successfully served as population models for risk
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analysis and reliability mechanisms. The Kumaraswamy distribution is one of these dis-

tributions which is particularly useful to many natural phenomena whose outcomes have

lower and upper bounds or bounded outcomes in the biomedical and epidemiological re-

search. Due to its beta-type and better than beta distribution by its explicit expression

of quantile function, the Kumaraswamy distribution has received considerable attention in

the literature. Its hazard function can be unimodal, uniantimodal, increasing, decreasing

and constant. This shows that the Kumaraswamy distribution can model a wide variety

of data sets.

4.1 Characteristic properties

A continuous random variable X is said to have a Kumaraswamy distribution with

parameters r, u if its pdf is given by,

f(x) = ruxr−1(1− xr)u−1 (26)

where, 0 < x < 1 and r, u > 0. Here, both r and u are shape parameters.

The pdf of Kumaraswamy distribution is represented in Figure 5 using different parameter

values.

The cumulative distribution function of Kumaraswamy distribution is,

F (x) = 1− (1− xr)u (27)

Corresponding survival function is,

F (x) = (1− xr)u (28)

Hazard rate function of Kumaraswamy distribution is,

h(x) = r u xr−1 (1− xr)−1 (29)

The plots of cumulative distibution function and hazard rate function of Kumaraswamy

distribution for different parameter values is shown in Figure 6.

The Cumulative hazard function of Kumaraswamy distribution is,

H(x) = −ln(F (x))

= −u ln(1− xr) (30)

The quantile function xp = Q(p) = F−1(p), for 0 < p < 1, of the Kumaraswamy

distribution is obtained from (27). It follows that the quantile function xp is,

xp = [1− (1− p) 1
u ]

1
r (31)
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Figure 5: Plots of probability density function of Kumaraswamy distribution for different

values of r and u

In particular the median of the Kumaraswamy distribution can be written as,

Md(x) = Md = [1− (1− 0.5)
1
u ]

1
r (32)

If a random variable X is distributed as Kumaraswamy with parameters r and u, then its

nth moment around zero can be expressed as,

E(Xn) = u B
(

1 +
n

r
, u
)

(33)

They exist for all n > −r. In particular,

E(X) = u B

(
1 +

1

r
, u

)

V ar(X) = u B

(
1 +

2

r
, u

)
−
[
u B

(
1 +

1

r
, u

)]2
(34)
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Figure 6: Plots of cdf and hazard rate function of Kumaraswamy distribution

5. Kumaraswamy Generalized Distribution

Combining the work of Eugene et al. (2002) and Jones (2004) lead to the construction

of a new class of Kumaraswamy generalized distribution. From an arbitrary parent cumu-

lative density function, G(x), the cumulative density function, F (x) of the Kumaraswamy

G distribution is defined by,

F (x) = 1− (1−G(x)r)u (35)

where, r, u > 0.

Correspondingly, the density function of this family is given by,

f(x) = r u g(x) G(x)r−1 (1−G(x)r)u−1 (36)

For every given baseline cumulative function G, this defines a family of distributions.

Clearly, the Kumaraswamy G distribution for r = u = 1 is the baseline distribution.

The Kumaraswamy G distribution has same parameters of the G distribution plus two

additional shape parameters r > 0 and u > 0. The Kumaraswamy G family of densities in

equation (36) allows for greater flexibility of its tails and can be widely applied in many

areas of biology and engineering.
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6. Kumaraswamy Gompertz Distribution

The probability density function of the four-parameter Kumaraswamy Gompertz Dis-

tribution is defined from equation (36) by taking g(x) to be equal to the pdf defined in

equation (1).

6.1 Characteristic properties

A continuous random variable X is said to have a Kumaraswamy Gompertz distribution

with parameters a, b, r and u if its pdf is given by,

f(x) = rubeaxe−
b
a
(eax−1)[1− e− ba (eax−1)]r−1

[1− [1− e− ba (eax−1)]r]u−1 (37)

where, x > 0 and a, b, r, u > 0.

The pdf of Kumaraswamy Gompertz distribution with different parameter values is

represented in Figure 7.

The cumulative distribution function of Kumaraswamy Gompertz distribution is given by,

F (x) = 1− [1− [1− e− ba (eax−1)]r]u (38)

Corresponding survival function is,

S(x) = P (X > x)

= [1− [1− e− ba (eax−1)]r]u (39)

Hazard rate function of Kumaraswamy Gompertz distribution is,

h(x) =
f(x)

S(x)

=
rubeaxe−

b
a
(eax−1)[1− e− ba (eax−1)]r−1

1− [1− e− ba (eax−1)]r
(40)

The plots of cumulative distibution function and hazard rate function of Kumaraswamy

Gompertz distribution for different parameter values is shown in Figure 8.

The quantile function of a continuous random variable is defined as the inverse of its

cumulative distribution function.
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Figure 7: Plots of the probability density function of Kumaraswamy Gompertz distribution

for different values of a, b, r and u

The quantile function xp = Q(p) = F−1(p), for 0 < p < 1, of the Kumaraswamy

Gompertz distribution is obtained from equation (37). It follows that the quantile

function xp is,

xp =
1

a
ln[1− a

b
ln(1− [1− (1− p) 1

u ]
1
r )] (41)

In particular the median of the Gompertz distribution can be written as,

Md(x) = Md =
1

a
ln[1− a

b
ln(1− [1− (1− 0.5)

1
u ]

1
r )] (42)

6.2 Estimation of Statistical Inference

In the view of estimating the parameters of Kumaraswamy Gompertz distribution, we

employ the method of Maximum Likelihood Estimation.
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Figure 8: Plots of cdf and hazard rate function of Kumaraswamy Gompertz distribution

Let x = (x1, x2, ..., xn) be a random sample of ’n’ independently and identically

distributed random variables each having a Kumaraswamy Gompertz distribution defined

in equation (37).

Let ξ = − b
a(eaxi − 1).

Then, the likelihood function L(x, a, b, r, u) is given by,

L(x, a, b, r, u) = (r u)n
n∏

i=1

b eaxi
n∏

i=1

eξ
n∏

i=1

(1− eξ)r−1

n∏

i=1

[1− (1− eξ)r]u−1 (43)

Let L = L(x, a, b, r, u).

logL = n[logr + logu] +

n∑

i=1

log(beaxi) + (r − 1)

n∑

i=1

log(1− eξ) +

n∑

i=1

ξ + (u− 1)

n∑

i=1

log(1− (1− eξ)r) (44)

Differentiating logL with respect to a, b, r and u gives;
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∂logL

∂a
=

n∑

i=1

bxie
axi

beaxi
+

n∑

i=1

[
b

a2
(eaxi − 1)− b

a
eaxixi

]
−

(r − 1)
n∑

i=1

eξ

1− eξ
[
b

a2
(eaxi − 1)− b

a
eaxixi

]
+

(u− 1)
n∑

i=1

reξ(1− eξ)r−1
1− (1− eξ)r

[
b

a2
(eaxi − 1)− b

a
eaxixi

]

=

n∑

i=1

xi +

n∑

i=1

[(
b

a2
(eaxi − 1)− b

a
eaxixi

)

(
1− (r − 1)eξ

(1− eξ) +
r(u− 1)eξ(1− eξ)r−1

1− (1− eξ)r
)]

(45)

∂logL

∂b
=

n∑

i=1

eaxi

beaxi
− 1

a

n∑

i=1

(eaxi − 1) +
(r − 1)

a

n∑

i=1

eξ(eaxi − 1)

1− eξ

−r(u− 1)

a

n∑

i=1

[
eξ(1− eξ)r−1(eaxi − 1)

1− (1− eξ)r
]

=
n∑

i=1

[
eaxi − 1

a(eaxi − 1)beaxi

beaxi

]
+

n∑

i=1

eξ(eaxi − 1)

a(1− eξ)

[
(r − 1)− r(u− 1)(1− eξ)r

1− (1− eξ)r
]

(46)

∂logL

∂r
=

n

r
+

n∑

i=1

log(1− eξ) +

(u− 1)

n∑

i=1

(1− eξ)rlog(1− eξ)
1− (1− eξ)r

=
n

r
+

n∑

i=1

log(1− eξ)
[
1− (u− 1)(1− eξ)r

1− (1− eξ)r
]

(47)

∂logL

∂u
=

n

u
+

n∑

i=1

log[1− (1− eξ)r] (48)

The MLEs â, b̂, r̂ and û are obtained by solving the nonlinear equations;

∂logL

∂a
= 0 ,

∂logL

∂b
= 0,

∂logL

∂r
= 0,

∂logL

∂u
= 0
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The maximization of log likelihood function in equation (44) requires numerical methods.

Iterative method such as Newton-Raphson may be used for parameter estimation.

7. Kumaraswamy Gompertz-Makeham Distribution

Kumaraswamy Gompertz-Makeham distribution is quite flexible and can have increas-

ing, decreasing and bathtub-shaped failure rate function depending on its parameters mak-

ing it effective in modeling survival data and reliability problems. The probability density

function of the five-parameter Kumaraswamy Gompertz Distribution is defined from equa-

tion (36) by taking g(x) to be equal to the pdf defined in equation (13).

7.1 Characteristic properties

A continuous random variable X is said to have a Kumaraswamy Gompertz-Makeham

distribution with parameters a, b, r, u and λ if its pdf is given by,

f(x) = ru[λ+ beax]e−λx−
b
a
(eax−1)[1− e−λx− ba (eax−1)]r−1

[1− [1− e−λx− ba (eax−1)]r]u−1 (49)

where, x ≥ 0 and a, b, r, u, λ > 0.

Plots of probability density function of Kumaraswamy Gompertz-Makeham distribution

for different values of a, b, r, u and λ is shown in Figure 9.

Corresponding survival function is,

F (x) = [1− [1− e−λx− ba (eax−1)]r]u (50)

Hazard rate function of Kumaraswamy Gompertz-Makeham distribution is,

h(x) =
ru[λ+ beax]e−λx−

b
a
(eax−1)[1− e−λx− ba (eax−1)]r−1

1− [1− e−λx− ba (eax−1)]r
(51)

The plots of cumulative distibution function and hazard rate function of Kumaraswamy

Gompertz-Makeham distribution for different parameter values is shown in Figure 10.
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Figure 9: Plots of probability density function of Kumaraswamy Gompertz-Makeham dis-

tribution for different values of a, b, r, u and λ

7.2 Estimation of Statistical Inference

In the view of estimating the parameters of Kumaraswamy Gompertz-Makeham distri-

bution, we employ the method of Maximum Likelihood Estimation.

Let x = (x1, x2, ..., xn) be a random sample of ’n’ independently and identically distributed

random variables each having a Kumaraswamy Gompertz-Makeham distribution defined

in equation (49).

Let ξ = −λx− b
a(eax − 1).

Then, the likelihood function L(x, a, b, r, u, λ) is given by,

L(x, a, b, r, u, λ) = (ru)n
n∏

i=1

(beaxi + λ)
n∏

i=1

eξ
n∏

i=1

(1− eξ)r−1

n∏

i=1

[1− (1− eξ)r]u−1 (52)

Let L = L(x, a, b, r, u, λ).
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Figure 10: Plots of cdf and hazard rate function of Kumaraswamy Gompertz-Makeham

distribution

logL = n[logr + logu] +
n∑

i=1

log(beaxi + λ) +
n∑

i=1

ξ +

(r − 1)
n∑

i=1

log(1− eξ) + (u− 1)
n∑

i=1

log[1− (1− eξ)r] (53)

Differentiating logL with respect to a, b, r, u and λ gives;

∂logL

∂a
=

n∑

i=1

[
bxie

axi

beaxi + λ
+ b

(
eaxi − 1

a2
− xie

axi

a

)
+

b(r − 1)eξ

1− eξ
(
−e

axi − 1

a2
+
xie

axi

a

)
−

br(u− 1)eξ(1− eξ)r−1
1− (1− eξ)r

(
−e

axi − 1

a2
+
xie

axi

a

)]

=
n∑

i=1

[
beξ

1− eξ
(
xie

axi

a
− eaxi − 1

a2

)(
(r − 1)− r(u− 1)(1− eξ)r

1− (1− eξ)r
)

+

(
b

beaxi + λ

)[
xie

axi + (beaxi + λ)

(
eaxi − 1

a2
− xie

axi

a

)]]
(54)
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∂logL

∂b
=

n∑

i=1

eaxi − 1
a(eaxi − 1)(beaxi + λ)

beaxi + λ
+
r − 1

a

n∑

i=1

eξ(eaxi − 1)

1− eξ −

r(u− 1)

a

n∑

i=1

eξ(1− eξ)r−1(eaxi − 1)

1− (1− eξ)r

=
n∑

i=1

[
eaxi − 1

a(eaxi − 1)(beaxi + λ)

beaxi + λ

]
+

n∑

i=1

eξ(eaxi − 1)

a(1− eξ)

[
(r − 1)− r(u− 1)(1− eξ)r

1− (1− eξ)r
]

(55)

∂logL

∂r
=

n

r
+

n∑

i=1

log(1− eξ)− (u− 1)
n∑

i=1

(1− eξ)rlog(1− eξ)
1− (1− eξ)r

=
n

r
+

n∑

i=1

log(1− eξ)[1− (u− 1)(1− eξ)r
1− (1− eξ)r ] (56)

∂logL

∂u
=

n

u
+

n∑

i=1

log[1− (1− eξ)r] (57)

The MLEs â, b̂, r̂, û and λ̂ are obtained by solving the nonlinear equations;

∂logL

∂a
= 0 ,

∂logL

∂b
= 0,

∂logL

∂r
= 0,

∂logL

∂u
= 0,

∂logL

∂λ
= 0

The maximization of the log likelihood function in equation (2.53) requires numerical

methods. Iterative method such as Newton-Raphson can be used for parameter estimation.

8. Application

To compare the four distributions, namely: Gompertz, Gompertz-Makeham, Kumaraswamy

Gompertz and Kumaraswamy Gompertz-Makeham, we fit these distributions to an uncen-

sored data set. The data represents the times of failures and running times for samples of

devices from an eld-tracking study of a larger system. The data has 30 observations and

it is as follows:

2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00,

0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66. Computations are

done with the help of R software. Now, consider the two-parameter Gompertz distibution

(G(a, b)), three-parameter Gompertz-Makeham distribution (GM(a, b, λ)), four-parameter
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Kumaraswamy Gompertz distribution (KG(a, b, r, u)) and five-parameter Kumaraswamy

Gompertz-Makeham distribution (KGM(a, b, r, u, λ)) with corresponding densities:

G : fG(x, a, b) = beaxe−
b
a
(eax−1) ; x > 0

GM : fGM (x, a, b, λ) = [λ+ beax]e−λx−
b
a
(eax−1) ; x > 0

KG : fKG(x, a, b, r, u, λ) = rubeaxe−
b
a
(eax−1)[1− e− ba (eax−1)]r−1

[1− [1− e− ba (eax−1)]r]u−1 ; x > 0

KGM : fKGM (x, a, b, r, u, λ) = ru[λ+ beax]e−λx−
b
a
(eax−1)[1− e−λx− ba (eax−1)]r−1

[1− [1− e−λx− ba (eax−1)]r]u−1 ; x > 0

The following table gives the descriptive statistics of the data:

Min Q1 Median Mean Q3 Max Kurtosis Skewness

0.02 0.6875 1.9650 1.77 2.9820 3 1.4537 -0.2699

To summarize, it is important to use the visual representations as well as formal statis-

tical tests to decide which model is the best. The K-S test and AIC value only measure

which of the presented models is the best; they do not say if any of the models are even a

good fit to the data. Visual representations like p-p plots, help make sure that the specified

models adequately fit the data. Once it is verified that a models fits the data by looking

at the p-p plot, the K-S test and AIC value will be used to decide which model is the best

for the data.

The p-p plot for the four distributions - Gompertz, Gompertz-Makeham, Kumaraswamy

Gompertz and Kumaraswamy Gompertz-Makeham is shown in Figure 11 and 12 The p-p

plot for Kumaraswamy Gompertz distibution shows that it is unfit for the given data set.

Also, it may be noted that the p-p plot of Kumaraswamy Gompertz-Makeham distribution

indicates a better fit for our data.

The Maximum Likelihood Estimates of the unknown parameters of each distribution

with respect to the given data are obtained using Non-Linear Minimization. With these

obtained estimates, the models are compared using the density plot. The Maximum Like-

lihood Estimates of the distribution parameters for G(a, b), GM(a, b, λ), KG(a, b, r, u) and

KGM(a, b, r, u, λ) and the statistics l(θ̂) is given in the following table:
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Figure 11: p-p plot of Gompertz and Gompertz-Makeham distribution

0.80 0.82 0.84 0.86 0.88 0.90

0.0

0.2

0.4

0.6

0.8

1.0

Kumaraswamy Gompertz distribution

Expected

O
b

s
e

rv
e

d

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Kumaraswamy Gompertz−Makeham

Expected

O
b

s
e

rv
e

d

Figure 12: p-p plot of Kumaraswamy Gompertz and Kumaraswamy Gompertz-Makeham

distribution
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Model Maximum Likelihood Estimates

G(a, b) 0.7402285 0.1847689 - - -

GM(a, b, λ) −1.934506× 10−3 −1.203726× 102 1.206476× 102 - -

KG(a, b, r, u) 1.099991 2.089319× 10−6 3.623456× 10−2 1.999525 -

KGM(a, b, r, u, λ) 1.4781023 0.2024657 0.2475147 0.1222549 1.0616082
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Figure 13: Density plots of the distributions along with histogram for the given data set.

The density plots of the distributions under study is shown in Figure 13. From the figure,

we can see that the Kumaraswamy Gompertz-Makeham distribution fits better compared

to the other distributions. Also, it may be noted that the Kumaraswamy Gompertz dis-

tribution do not fit the data well.

A method for comparing among two or more models is the Akaike Information Criterion

(AIC) which is a measure of the relative goodness of fit for statistical model. The AIC is
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calculated as negative two times the value of the log-likelihood function evaluated at the

maximum likelihood estimates plus two times the number of parameters or,

AIC = −2 l(θ̂) + 2p

where, l(θ̂) is the log-likelihood function evaluated at the maximum likelihood estimates

and p is the number of parameters.

To choose among the best models, the AIC values and the values of l(θ̂) are calculated

for each of the models, and then the models are ranked by this criterion. The model with

the lowest AIC value and the largest value of l(θ̂) is considered the best. The values of

Akaike Information Criterion (AIC) and log-likelihood function obtained is given in the

following table:

Model l(θ̂) AIC

G(a, b) -41.34595 86.6919

GM(a, b, λ) -43.98049 93.96097

KG(a, b, r, u) -123.6019 255.2038

KGM(a, b, r, u, λ) -37.12753 84.25507

From the above table, we can see that the Kumaraswamy Gompertz-Makeham distribu-

tion has the minimum AIC value and the maximum value of l(θ̂). Therefore, Kumaraswamy

Gompertz-Makeham distribution provides the better fit among the compared distributions

for the given data.

Most statistical methods assume an underlying model in the derivation of their results.

However, when we presume that the data follow a specific model, we are making an as-

sumption. If such a model does not hold, then the conclusions from such analysis may be

invalid. Although density plotting and other graphical methods can guide the choice of

the parametric distribution, one cannot of course be sure that the proper model has been

selected. Hence model validation is still necessary to check whether we have achieved the

goal of choosing the right model.

One method that can be used to check model appropriateness or the goodness of fit

is the Kolmogorov-Smirnov (K-S) test. The K-S test is a nonparametric goodness-of-fit

test and is used to determine whether an underlying probability distribution differs from

a hypothesized distribution. KS test can be used to compare a sample with a reference

probability model. The K-S test statistic quantifies a distance between the empirical

distribution function of the sample and the cumulative distribution function of the reference

model.
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To study the goodness-of-fit of the models under study, we compute the Kolmogorov-

Smirnov statistic between the empirical distribution function and the fitted distribution

function when the parameters are obtained by method of maximum likelihood. The results

of the K-S test are shown in the table below:

Model D-value p-value

G(a, b) 0.18892 0.2346

GM(a, b, λ) 0.21295 0.1316

KG(a, b, r, u) 0.78879 6.328× 10−15

KGM(a, b, r, u, λ) 0.14158 0.5845

From the above table, since the fitted KGM has the highest p-value , it is clear that the

estimated Kumaraswamy Gompertz-Makeham model provides good fit to the given data

set. Also, it is seen that the Kumaraswamy Gompertz distribution is unfit for the given

data.

9. Conclusion

A data of 30 observations representing the times of failures and running times for samples

of devices from an eld-tracking study of a larger system was considered. The aim was to find

the distribution which better fits the data among the four distibutions, namely, Gompertz,

Gompertz-Makeham, Kumaraswamy Gompertz and Kumaraswamy Gompertz-Makeham.

Ultimately, in order to fit a probability distribution to a data set, it is important to first

get an understanding of the structure of the data. This will help in the specification of a

model. After choosing possible models, estimates of the parameters for each distribution

are estimated by Maximum Likelihood Estimation. These estimates are then used to

visualize the density functions to get an idea of the fit. The AIC values and the log

likelihood function estimated at the MLEs are computed. After computing these values,

the Kolmogorov-Smirnov test to choose which model fits the best to the data is performed.

Also, p-p plots for the given data set are constructed.

Using the AIC values and to compare all four distributions, it is found that Kumaraswamy

Gompertz-Makeham distribution has the lowest AIC value and maximum value of l(θ̂). The

K-S test also shows similar result, the Kumaraswamy Gompertz-Makeham distribution be-

ing the one with the lowest value of test statistic and maximum p-value in comparison with

the other three distributions. The density plot and p-p plot also favours the same distri-

bution. Therefore, from all the results above, it can be concluded that the Kumaraswamy

Gompertz-Makeham distribution provides significantly better fit to the given data set.
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Abstract

Prevalence of non-alcoholic steatohepatitis is increasing in parallel with the rising preva-

lence of type 2 diabetes and obesity around the world. Current evidence strongly suggests

that women who have had type 2 Diabetes Mellitus are at greater risk of Cardio Vascu-

lar Disease later in life. A definite model for predicting absolute risk of Cardio Vascular

Disease later in women who had gestational diabetes is not yet available.

Non-alcoholic steatohepatitis (NASH) is commonly associated with type 2 diabetes

mellitus (DM). Prevalence of NASH in type 2 DM has not been well studied and there

is an epidemic rise in type 2 DM in developed and developing countries. Its association

with chronic liver disease in the form of NASH makes it an important health problem.

The world wide prevalence of non-alcoholic fatty liver disease(FLD) is estimated to have

more in adults. Non-alcoholic fatty liver disease (NAFLD)is often associated with insulin

resistance and is strongly associated with type 2 diabetes mellitus and obesity. NAFLD

patients are at risk of progressing to NASH and ultimately cirrhosis; they are also at higher

risk of cardiovascular diseases (CVD), including coronary heart disease and stroke. In this

paper we are trying to analyse the risk of new CVD event in child bearing women with

diabetic and non diabetic. Baseline characteristics were age, obesity, diabetic level, hy-

pertension, cholesterol level etc. and trying to derive a statistical model for estimating

the association of many such components with blood sugar. Finally the significance of the

model statistically tested. wepropose to expand our study to prove whether NASH is an

independent risk factor for CVD later.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a condition in which excess fat is stored

in your liver. This build-up of fat is not caused by heavy alcohol use. When heavy alcohol

use causes fat to build up in the liver, this condition is called alcoholic liver disease. Two

types of NAFLD are simple fatty liver and non-alcoholic steatohepatitis (NASH). Simple

fatty liver and NASH are two separate conditions. People typically develop one type of

NAFLD or the other, although sometimes people with one form are later diagnosed with

the other form of NAFLD. Simple fatty liver, also called non-alcoholic fatty liver (NAFL),

is a form of NAFLD in which you have fat in your liver but little or no inflammation or

liver cell damage. Simple fatty liver typically does not progress to cause liver damage or

complications. NASH is a form of NAFLD in which you have hepatitis inflammation of

the liverand liver cell damage, in addition to fat in your liver. Inflammation and liver cell

damage can cause fibrosis, or scarring, of the liver. NASH may lead to cirrhosis or liver

cancer. Experts are not sure why some people with NAFLD have NASH while others have

simple fatty liver.

Baseline information was obtained via a questionnaire on general information, physical

examination (height, weight, and blood pressure), laboratory tests (triglycerides, total

cholesterol, blood glucose, aspartate aminotransferase (AST) or serum glutamic-oxaloacetic

transaminase (SGOT) and alanine aminotransferase (ALT) or Serum glutamic pyruvic

transaminase (SGPT), Body mass index (BMI) and waist circumference (WC). Prevalence

of NAFLD and NASH in our study of type 2DM patients is high and increases with multiple

components of metabolic syndrome. (Metabolic syndrome is a cluster of conditions that

occur together, increasing your risk of heart disease, stroke and type 2 diabetes. These

conditions include increased blood pressure, high blood sugar, excess body fat around the

waist, and abnormal cholesterol or triglyceride levels). BMI is obtained by dividing body

weight in kilograms by height in meters squared. In developed countries, subjects with a

BMI ≥ 25kg/m2 are defined as overweight and those with a BMI ≥ 30kg/m2 are defined

as obese, and there are good associations and positive predictive effects between BMI and

obesity-related chronic diseases. Both obesity and NAFLD are closely related to T2DM.

Heredity is not a factor for NASH. As DM attained by heredity, there is no chance for

NAFLD. It is a life style disease. TG LEVEL INCREASES means there is a high risk of

CVD.

As SGPT and SGOT level are normal levels in almost data, even though there exists

chance of fatty liver.

NAFLD is more common in people who have certain conditions, including obesity and
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conditions that may be related to obesity, such as type 2 diabetes. Researchers have found

NAFLD in 40 to 80 percent of people who have type 2 diabetes and in 30 to 90 percent

of people who are obese. In research that tested for NAFLD in people who were severely

obese and undergoing bariatric surgery, more than 90 percent of the people studied had

NAFLD.

The majority of people with NAFLD have simple fatty liver, and people with simple

fatty liver typically dont develop complications. NASH can lead to complications, such

as cirrhosis and liver cancer. People with NASH have an increased chance of dying from

liver-related causes. If NASH leads to cirrhosis, and cirrhosis leads to liver failure, you

may need a liver transplant to survive.

Cardiovascular disease (CVD). It is a general term for a disease of the heart or blood

vessels. Blood flow to the heart, brain or body is reduced because of a blood clot (throm-

bosis) or a build-up of fatty deposits inside an artery, leading to hardening and narrowing

of the artery (atherosclerosis).

The three main types of CVD are: coronary heart disease, stroke & peripheral arterial

disease. Coronary heart disease this occurs when your heart blood supply is blocked or

interrupted by a build-up of fatty substances (called atheroma) in the coronary arteries.

The coronary arteries are two major blood vessels that supply the heart with blood. Stroke-

A stroke is a serious medical condition that occurs when the blood supply to the brain is

disturbed. Peripheral arterial disease is also known as peripheral vascular disease, occurs

when there is a blockage in the arteries to your limbs (usually your legs).

2. Review Of Literature

NasrinAmiri et.al., (2017) conducted the study, Type 2 diabetes mellitus and non-

alcoholic fatty liver disease: a systematic review and meta-analysis. The findings indi-

cated that the overall prevalence of NAFLD among type 2 diabetes mellitus patients is

significantly higher. It can be concluded that type 2 diabetes mellitus patients should be

managed to prevent NAFLD.

Alessandro Mantovaniet.al, (2018) studied Non-alcoholic Fatty Liver Disease and Risk

of Incident Type 2 Diabetes: A Meta-analysis and found that NAFLD is significantly

associated with a twofold increased risk of incident diabetes. However, the observational

design of the eligible studies does not allow for proving causality.

Hagstromet.al, (2019) studied Cardiovascular risk factors in non-alcoholic fatty liver

disease. It concluded that Patients with NAFLD are at an increased risk for CVD compared

to matched controls, but histological parameters do not seem to independently predict this

risk.

Carrie et.al.,(2018) conducted a study on, The Association Between Non-alcoholic Fatty

Liver Disease and Cardiovascular Disease Out comes found that the causal relationship of
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CVD and NAFLD remains under investigation, but the strong bidirectional association be-

tween CVD and NAFLD warrants clinical intervention in patients with NAFLD to modify

metabolic risk factors, including T2DM, dyslipidaemia, hypertension, and obesity.

Mathews et.al., (2018) conducted a study Nonalcoholic steatohepatitis, obesity, and

cardiac dysfunction. It summarises Obesity is a major factor in the development of non-

alcoholic fatty liver disease (NAFLD) and its progression to steatohepatitis. Patients

with NAFLD have a significant increase in cardiovascular disease risk. For biopsy- proven

NASH, vitamin E and pioglitazone are the recommended medical treatments in addition

to lifestyle modification.

Rashmee and and Gagan (2017) studied Non-alcoholic fatty liver disease and cardiovas-

cular risk and concluded that Non-alcoholic fatty liver disease (NAFLD) is often associated

with insulin resistance and is strongly associated with type 2 diabetes mellitus and obe-

sity. NAFLD is now recognized as a risk factor for poor cardiovascular outcomes including

mortality and morbidity from major vascular events. As a whole, NAFLD patients may

benefit from more careful surveillance and early treatment interventions.

Dharmalingam M, Yamasandhi P G (2018) conducted a study on alcoholic fatty liver

disease and Type 2 diabetes mellitus and concluded that T2DM and NAFLD have a

common association. The increasing prevalence makes it a public health problem.

Bhatt KN et.al., (2017) conducted study Prevalence of nonalcoholic fatty liver disease

in type 2 diabetes mellitus and its relation with insulin resistance in South Gujarat Region.

Study revealed a high incidence of NAFLD in Type 2 diabetes patients stressing the need

for early screening.

Claudio Tana et.al, (2019) conducted study on Cardiovascular Risk in Non-Alcoholic

Fatty Liver Disease: Mechanisms and Therapeutic Implications conclude that all cardio-

metabolic risk factors should be carefully and routinely screened among patients with

NAFLD, and that disease management should be focused on both specific lifestyle modi-

fications and aggressive risk factors modification, which would not only reduce the risk of

liver disease progression, but may also provide benefit by reducing the risk of developing

cardiac complications.

Jonathan M. Hazlehurst, et.al (2016) studied Non-alcoholic fatty liver disease and dia-

betes and concluded that Diabetes and NAFLD are reciprocal risk factors and when they

are occurtogether, an increasing body of data demonstrates that diabetes is more difficult

to manage and that NAFLD is more likely to progress.

Giovanni Targher, et.al (2005) conducted study on Nonalcoholic Fatty Liver Disease

and Risk of Future Cardiovascular Events Among Type 2 Diabetic Patients and suggest

that the metabolicsyndrome predicts incident cardiovascular disease (CVD), so it is possible

to hypothesize that NAFLD patients might portend a greater CVD risk and that NAFLD

itself might confer a CVD risk above that associated with individual metabolic syndrome

risk factors.

Dyson JK, et.al (2014) studied Non-alcoholic fatty liver disease: a practical approach
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to treatment concluded that Lifestyle interventions aimed at weight loss and increased

activity are essential for all patients with NAFLD and if sustained are effective in the

treatment of NAFLD.

Carrie R. Wong, et.al (2018) conducted study on The Association Between Nonalco-

holic Fatty Liver Disease and Cardiovascular Disease Outcomes and concluded that The

causal relationship of CVD and NAFLD remains under investigation, but the strong bidi-

rectional association between CVD and NAFLD warrants clinical intervention in patients

with NAFLD to modify metabolic risk factors, including T2DM, dyslipidemia, hyperten-

sion, and obesity.

3. Methodology & Data Analysis

The proposed research is to develop a statistical model which specifies the significance

of diabetes mellitus in the risk factor analysis of NASH and CVD. From the literatures we

can see that there are some relations between diabetes mellitus, NASH and CVD.

Here, in the initial stage of the research work a regression model is formulated to show

the effect of age, weight, waist circumference etcon blood sugar. Also, discussed about the

various risk factors which cause NAFLD and CVD.

375 child bearing diabetic women were screened from various hospitals in the 2 districts

- Palakkad and Malappuram - at Kerala to make a real data analysis.135 (36%) of them

with diabetic as a hereditary component. 219 of them were reported with fatty liver.

That is 59% of carrying ladies were with FLD. Initially the analysis of DM with related

components, but will be more effective for further future analysis. Age, height, weight,

waist circumference, the presence of comorbidities (diabetes, arterial hypertension), SGOT,

SGPT, Total cholesterol, triglycerides (TG) and body mass index (BMI) were evaluated.

Using the real values of above factors, a frequency table is formulated and a bar diagram

is drawn based on the table. The level of association is shown through a dendrogram. A

regression model is obtained to predict the effect of various baseline characteristics with

CVD and NAFLD on blood sugar. Based on the abdominal ultra sound scanning images,

fatty liver is confirmed. Blood sugars, SGOT, SGPT, Total cholesterol, triglycerides (TG)

were obtained from bio chemistry reports. Some of the patients having control level of

SGPT, SGOT have symptoms of fatty liver shown in their Ultra Sound Scanning. Central

obesity as measured by weight circumferences (WC) and SGPT levels were significantly

higher in people with fatty liver.
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Table 1: Frequency Table Age of people

Age Frequency

15-20 3

20-25 18

25-30 126

30-35 129

35-40 69

40-45 27

45-50 3

total 375

Figure 1: Bar chart age frequency

From the bar chart we can analysed that the child bearing women have more number

of type2 diabetic patients in the age 35-40.

Table 2 shows the correlation between the different base line characteristics of study.

Correlation Coefficient greater than 0.5 shows high risk of having NAFLD and CVD. High

positive correlation indicates that it is a risk factor for NAFLD. The correlation between

SGPT, SGOT AND TG indicates as increasing level of SGPT,SGOT enzymes affect the

functioning of liver and causes to liver damage. As TG level increases there is a high risk

of CVD. The high correlation of hypertension also indicates that high risk of CVD.

4. Dendrogram

The dendrogram is a multilevel hierarchy where clusters at one level are joined together

to form the clusters at the next levels. This makes it possible to decide the level at which
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Table 2: Correlation Coefficient between the components

Risk Factor Correlation Coefficient

Weight & Waist Circumference 0.69

Waist Circumference & TG 0.588

SGOT & TG 0.709

SGPT & BMI 0.597

Weight & BMI 0 .87

Waist Circumference & BMI 0.597

SGPT & TG 0.693

Systolic Pressure & Diastolic Pressure 0.876

to cut the tree for generating suitable groups of a data objects. It is a type of tree

diagram showing hierarchical clustering relationships between similar sets of data. They

are frequently used in biology to show clustering between genes or samples, but they can

represent any type of grouped data. The dendrogram is a visual representation of the

compound correlation data. The individual compounds are arranged along the bottom of

the dendrogram and referred to as leaf nodes. Compound clusters are formed by joining

individual compounds or existing compound clusters with the join point referred to as a

node.

Figure 2 indicates the dendrogram of the average linkage data variables. In the dendro-

gram it is found that the labels SGOT and SGPT with label numbers 7and 8 has first level

of association with the risk of NAFD if their values is between 0-5. SGOT and SGPT af-

fect the predicted variable in the same way. That means these two components are equally

affected in the predicted variable NAFLD. The labels systolic and diastolic pressure with

label number 11 and 12 also hasfirst level of association. Therefore, there exist a high cor-

relation between these risk factors and CVD. The labels SGPT, SGOT, with label number

7and 8 have second level of association if their values is between 5-10.TG, WEIGHT, BMI

with label number9,3,10 will also have second level of association. There is also a positive

correlation. That is these variables affect directly in predicted variables NAFLD and CVD.

Also, the labels WEIGHT, BMI AND WAISTCIR with label number 3,10and 4 have third

level of association. That means these three variables also affect the predicted variables.

5. Conclusion

We discussed the risk of new CVD and NASH event in child bearing women with dia-
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Figure 2: Dendrogram using Average Linkage (Between Groups)

betic and non-diabetic. Out of 375 child bearing diabetic women, 135 (36%) of them with

diabetic as a hereditary component. 219 of them were reported with fatty liver. That is

59% of carrying ladies were with FLD. A regression analysis is conducted on the observa-

tions taken from child bearing women having diabetics to evaluate the effect of the various

risk factors of NASH and CVD on blood sugar and a statistical model is derived. From the

analysis the relation between predictor variables such as age, weight, waist circumference

etc. with the dependent variable blood sugar is expressed as a linear regression model. The

variance inflation factor (VIF) is calculated to estimate multicollinearity. From the evalu-

ation it is found that the VIF is less than 10 which indicates there is no multicollinearity

in the observed data. Hence the model is nicely fitted for such data. The proposed re-

search objective is to develop a statistical model which specifies the significance of diabetes

mellitus in the risk factor analysis of NASH and CVD and we are trying to analyze the

significance of the same in the coming days.
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Abstract

In this paper, we introduce zero-inflated Poisson (ZIP) and multivariate zero-inflated

Poisson (MZIP) distributions and the corresponding regression models. The EM method

is used to obtain estimates of the regression coefficients. A detailed review on Robust

estimation for ZIP regression are also given. Along with it, we propose a robust estimation

for MZIP regression and conduct a simulation study. In this paper the method adopted

for robust estimation is to accommodate, rather than eliminate, outliers and use a robust

estimation methodology that minimizes their effect on estimation of the model that is fol-

lowed by the vast majority of data.

Key words:Zero-inflated Poisson, zero-inflated Poisson, Robust estimation.

1. Introduction

In statistical modeling, regression analysis is a statistical process for estimating the

relationships among variables. It includes many techniques for modeling and analysing

several variables, when the focus is on the relationship between a dependent variable and

one or more independent variables (or predictors). A linear regression analysis is used for

investigating and modelling the linear relationship between dependent variable and inde-

pendent variables by fitting a linear equation to observed data. Here the response variable

must be continuous random variable which is assumed to have normal distribution with

constant variance and The explanatory variables can be either quantitative or qualitative

variables. Typically, maximum likelihood estimation is used for fitting such models. But

when outliers are present in the data then the maximum likelihood estimator can become
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unstable. In this situation we adopt robust regression. It is a form of regression analy-

sis designed to overcome some limitations of traditional parametric and non-parametric

methods. They are not overly effected by violations of assumptions by the underlying

data-generating process.

A simple linear regression model is a model with a single regressor x that has a relationship

with a response y that is a straight line. This simple linear regression model is obtained

as follows,

y = β0 + β1x+ ε

where the intercept β0 and the slope β1 are unknown constants and εis a random error

component. The errors are assumed to have mean zero, unknown variance σ2 and are

uncorrelated.

A multiple linear regression model is a model with two or more regressors that has a

relationship with a response y which describes a hyperplane. The model,

y = β0 + β1x1 + β2x2 + ...+ βkxk + ε

is called a multiple linear regression model with k regressors. The parameters βj , j = 1,

2, ..., k, are called the regression coefficients. This model describes a hyperplane in the

k-dimensional space of the regressor variables xj .

The kth order polynomial model in one variable is given by

y = β0 + β1x+ β2x
2 + ...+ βkx

k + ε

If xj = xj ; j = 1, 2, ...k then the model is multiple linear regression model in k explanatory

variables x1, x2, ..., xk. The polynomial model can be used in those situations where the

relationship between study and explanatory variables are curvilinear.

A logistic regression model is one form of a generalized linear model where the response

variable takes on the values either 0 or 1. The general form of the logistic regression model

is given by

yi = E(yi) + εi

where

E(yi) = πi =
exp(x′iβ)

1 + exp(x′iβ)

A Poisson regression model is an another form of a generalized linear model where the

response variable follow Poisson distribution. A random variable Y is said to follow a

Poisson distribution if it assumes only non-negative values and its probability mass function

(pmf) is given by;

f(y;λ) =
e−λλy

y!
, ify = 0, 1, 2, ..., λ > 0, (1)
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The Poisson distribution is often used to model rare events and having random variables

with non-negative integer values. The data can be modeled through simple Poisson regres-

sion as given below,

log(µi) = θ′X

The Zero Inflated Poisson (ZIP) regression model, well described by Lambert (1992), is a

simple mixture model for count data with excess zeros. The model is a combination of a

Poisson distribution and a degenerated distribution at zeros. If the observed counts are

not univariate, we consider multivariate zero-inflated Poisson regression model. Section 2

consists of a review on zero-inflated Poisson distribution and its properties, zero-inflated

Poisson regression modelling procedures and its robust estimation. Section 3 consists of

a study on multivariate Zero-Inflated Poisson (MZIP) distribution and MZIP regression

models including estimation of parameters. In section 4, we present the robust estima-

tion procedure for MZIP model. Section 5 does simulation study of MZIP model in a

contaminated data in R. Section 6 gives a brief conclusion.

2. Zero Inflated Poisson Regression Model

Zero-inflated distributions are used to model count data that have many zero counts, i.e.

the observations of counts in which the number of zero events is higher than predicted by a

Poisson model. Thus the ZIP distribution employs two components. The first component

is governed by a degenerate distribution which is localized at 0. The second component is

governed by a traditional Poisson distribution that generates non-negative counts including

zeros.

Specifically if Y are independent random variables having a ZIP distribution, the zeros

are assumed to arise in two ways corresponding to distinct underlying states. The first

state occurs with probability p and produces only zeros, while the other state occurs with

probability 1- p and leads to standard Poisson counts with mean λ and a chance for further

zeros. In general the zeros from the first state are called structural zeros and those from the

Poisson distribution are called sampling zeros. For example, in counting disease lesions on

plants, a plant may have no lesions either because it is resistant to the disease, or simply

because no disease spores have landed on it. This is the distinction between structural

zeros, which are inevitable, and sampling zeros, which occur by chance.

This two-state process gives a simple two-component mixture distribution.

f(y) = pf1(y) + (1− p)f2(y)

where f1 is a degenerated distribution of zeros and f2 is Poisson distribution with parameter
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λ. The pmf can be written as

f(y;λ, p) = p+ (1− p)e−λ, ify = 0, λ > 0

= (1− p)e
−λλy

y!
, ify = 1, 2, ..., 0 ≤ p ≤ 1 (2)

We denote this symbolically as Y ∼ ZIP (λ, p). It is clear that this reduces to standard

Poisson when p = 0. For positive values of p we have zero inflation.

2.1 Properties

• E(Y ) = λ

• V (Y ) = p
1−pλ

2 + λ

• MY (t) = p+ (1− p)eλ(et−1)

• ΦY (t) = p+ (1− p)eλ(eit−1)

2.2 Estimation of Parameter of ZIP distribution

Maximum likelihood estimation is used for estimating the parameters of ZIP distribu-

tion.

In the case of homogeneous sample the log-likelihood function can be written as

l(λ, p) = n0log[p+ (1− p)e−λ] +
J∑

j=1

njlog[(1− p)e
−λλj

j!
]

where J is the largest observed count value, nj is the frequency of each possible count

value, j = 0, 1, ..., J ; n0 is the number of observed zeros and
∑

J
j=1nj = n the total number

of observations or the sample size.

The maximum likelihood estimates (MLE) λ̂and p̂ are obtained as the values of λ and p

which maximize l(λ, p). The above likelihood function can be written as

l(λ, p) = n0log[p+ (1− p)e−λ] + log(1− p)
J∑

j=1

nj − λ
J∑

j=1

nj + logλ
J∑

j=1

jnj − j!
J∑

j=1

nj

Then we have

∂l(λ, p)

∂λ
=
−n0(1− p)e−λ
p+ (1− p)e−λ −

J∑

j=1

nj +

∑J
j=1 jnj

λ
(3)

∂l(λ, p)

∂p
=

n0(1− e−λ)

p+ (1− p)e−λ −
∑J

j=1 nj

1− p (4)
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Equating (3)and (4)to zero, we get

n0(1− p)e−λ
p+ (1− p)e−λ +

J∑

j=1

nj =

∑J
j=1 jnj

λ
(5)

n0(1− e−λ)

p+ (1− p)e−λ =

∑J
j=1 nj

1− p (6)

Solving (5) and (6), we have

e−λ
∑J

j=1 nj

1− e−λ +
J∑

j=1

nj =

∑J
j=1 jnj

λ
(7)

That is,

λ

1− e−λ =

∑J
j=1 jnj∑J
j=1 nj

(8)

This means that λ̂ satisfies the equation

λ̂ =

∑J
j=1 j × nj(1− e−λ)

∑J
j=1 nj

(9)

Note that this does not depend on p or n0. From (6) we have,

n0(1− e−λ)(1− p) = [p+ (1− p)e−λ]
J∑

j=1

nj (10)

Solving this, we get

p̂ =
n0 − (n0 +

∑J
j=1 nj)e

−λ
∑J

j=1 nj + n0 − (
∑J

j=1 nj + n0)e−λ
(11)

ie,

p̂ =
n0 − ne−λ
n(1− e−λ)

(12)

where n = n0 +
∑J

j=1 nj

From above equations for λ̂ and p̂ it is clear that these values again contains unknown

parameters. Therefore we use the following steps to obtain λ̂ and p̂.

1. Fit a standard Poisson model to obtain an initial value λ(0) for λ.

2. Use an iterative scheme for λ̂

λ̂(m+ 1) =
[1− eλ̂(m+1)]

∑J
j=1 nj × j∑J

j=1 nj
(13)

The iterations are continued until |λ̂(m+1) − λ̂(m)| ≤ ε, a small quantity, where λ̂(m)

and λ̂(m+1) are the estimates of λ at mth and (m+ 1)th iteration respectively.
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3. Obtain p̂ by substituting λ̂ given by the final iterations of step (2) of (11).

The above algorithm is a particular case of Expectation Maximization (EM) algorithm

introduced by Dempster (1977), which is a general methodology for maximum likelihood

estimation for finite mixture models and latent variable models.

2.3 Zero-Inflated Poisson Regression Model

Zero-inflated Poisson (ZIP) regression model, well described by Lambert (1992), is a

simple mixture model for count data with excess zeros. The model is a combination of a

Poisson distribution and a degenerated distribution at zeros. This model is useful when

the data is over dispersed with many zero counts. Here the zero counts are divided into

two parts, certain zeros and the random zeros. The certain zero is modelling using logistic

regression analysis and the random zeros and positive counts are modelling using Poisson

regression analysis. In ZIP regression, the response vector is y = (y1, y2, ..., yn)T , where yi
is the observed value of the random variable Yi. The Yi s are assumed independent, where

Yi =

{
0, with probability pi
Poisson λi, with probability (1− pi),

(14)

Moreover, the parameters p = (p1, ..., pn)T and λ = (λ1, ..., λn)T are modelled through

canonical link generalized linear models (GLM) as logit(p) = Gγ and log(λ) = Bβ, where

γ and β are regression parameters, and G and B are corresponding design matrices that

pertain to the probability of zero state and Poisson mean, respectively. The log-likelihood

function for this model can be written as

l(γ, β; y) =
∑

yi=0

log[GTi γ+exp(e−B
T
i β)]+

∑

yi>0

(yiB
T
i β−exp(eB

T
i β)−

∑

yi>0

log(yi!)−
n∑

i=1

(1+e(G
T
i γ))

(15)

2.4 Robust Estimation for Zero-Inflated Poisson Regresion

The zero-inflated Poisson regression model is a special case of finite mixture models

that is useful for count data containing many zeros. Typically, maximum likelihood (ML)

estimation is used for fitting such models. However, it is well known that ML estimator

is highly sensitive to the presence of outliers and can become unstable when the mixture

components are poorly separated. In this case we use Robust estimation, an estimation

technique which is insensitive to small departures from the idealized assumptions which

have been used to optimize the algorithm. Here we establish an alternative robust esti-

mation approach, robust expectation-solution (RES) estimation. And the proposed RES

algorithm is a modification of the EM algorithm with the property of robustness.

In ZIP models, as in other mixture models, the EM algorithm is a particularly convenient
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approach for computing MLE (e.g. Lambert, 1992). This algorithm is set up by intro-

ducing missing data into the problem. In particular, suppose we knew which zeroes came

from the degenerate distribution (the zero state); and which came from the non-degenerate

distribution (the non-zero state). That is, suppose we could observe zi = 1when yi is from

zero state, and zi = 0when yi is from non-zero state. Then the log-likelihood for the

complete data (y, z) would be

lc(γ, β; y, z) =
∑

[ZiG
T
i γ − log(1 + eG

T
i γ ]+

∑
(1−zi)[yiβTi β−eB

T
i β−log(yi!] = lcγ(γ; y, z)+lcβ(β; y, z)

(16)

wherez = (z1, z2, ..., zn)T This log-likelihood is easy to maximize, because lcγ(γ; y, z) and

lcβ(β; y, z) can be maximized separately with respect to γ and β respectively, via standard

calculations. With the EM algorithm, the log-likelihood of model is maximized iteratively

by alternating between estimating zi by its conditional expectation under the current

estimates of (γ, β) (E step) and then,with the zi fixed at their expected values from the E-

step, maximizing lc(γ, β; y, z) (M step), until the estimated (γ, β) converges and iteration

stops.

In more detail, the EM algorithm begins with starting values θ(0) = (γ(0)T , β(0)T )T and

proceeds iteratively via the following three steps until convergence.

E step: Estimate zi by its conditional mean z
(r)
i under the current estimates γ(r) and β(r)

z
(r)
i = P (zero state|yi, γ(r), β(r))

=
P (yi|zero state)P (zero state)

P (yi|zero state)P (zero state) + P (yi|Poisson state)P (Poisson state)

M step for γ:Find γ(r+1) by maximizing lcγ(γ; y, z). This can be accomplished by fitting

a binomial logistic regression of z(r)on design matrix G with binomial denominator equal

to one. It is equivalent to solving the estimating equation

1

n

n∑

i=1

[z
(r)
i − logit−1(GTi γ)]Gi = 0 (17)

M step for β:Find β(r+1) by maximizing lcβ(β; y, z). It is equivalent to solving the esti-

mating equation

1

n

n∑

i=1

(1− z(r)i )[yi − eB
T
i β]Bi = 0 (18)

In the RES approach, we propose to replace the estimating functions from the M step

of the EM algorithm with robustified estimating functions. Thus we change from EM

algorithm to RES algorithm. Essentially we propose to down weight observations that fall

in the extreme upper and lower tail of the Poisson distribution in the estimating function.

Specifically, we suggest that γ(r+1) and β(r+1) be found by solving the following equations:

1

n

n∑

i=1

ω(Gi)[z
(r)
i − logit−1(GTi γ)]Gi = 0 (19)
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1

n

n∑

i=1

(1− z(r)i )ω(Bi)[ψc(yi)− oi(β, c)]Bi = 0 (20)

where

ψc(y) =





j1, y < j1

y, yε[j1, j2]

j2, y > j2

(21)

where j1 and j2 being the c and (1 - c) quantiles of the non-degenerate Poisson component,

respectively; and

oi(β, c) = E[ψc(Yi)|Yi ∼ Poisson(λi = eBiβ)]

= j1P (Yi < j1) + λiP (j1 − 1 ≤ Yi ≤ j2) + j2P (Yi > j2)

where probabilities are computed based on the Poisson component density. Here,ω(.)

is a function to down weight large leverage points. A simple choice for ω(Gi) that

we use throughout this paper is
√

1− hi, where hi is the ith diagonal element of H =

G(GTG)−1GT , with a similar definition for ω(Bi). The choice of upper and lower quantile,

in ψc(.) controls the trade-off between robustness and efficiency. Here we take c = 0.01, a

value that has been chosen to be small to guard against the occurrence of a small number of

truly anomalous (or even erroneous) observations rather than to eliminate data that come

from a real, non-trivial component of the mixture (i.e., a third latent class underlying the

data that arises with non-negligible probability).

2.5 Influence function(IF)

The IF is a useful and popular tool for quantifying the degree of robustness of a statistic

by measuring the potential effect of an additional observation. The classical ML estimating

equations for θ = (γT , βT )T can be written as joint equations

1

n

n∑

i=1

[Eθ(zi|yi)− logit−1(GTi γ)]Gi = 0 (22)

1

n

n∑

i=1

[1− Eθ(zi|yi)][yi − eB
T
i β]Bi = 0 (23)

where the expectation is with respect to zi given Yi = yi. The IF of β̂MLE , the MLE

with respect to β for the ZI model, quantifies the influence of one additional observation

yj drawn from model (15). The function is given by

IFMLE(yj) = [1− Eθ(zj|yj)][yj − eB
T
j β][−Eθ(

∂

∂βT
[1− Eθ(zj|yj)][yj − eB

T
j β])Bj]

−1Bj

(24)
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As can be seen in IFMLE(yj) the influence of an outlier on the MLE is proportional to the

score function and is, therefore, unbounded in general. The estimating functions underlying

the RES method are:

1

n

n∑

i=1

ω(Gi)[Eθ(zi|yi)− logit−1(GTi γ)]Gi = 0 (25)

1

n

n∑

i=1

[1− Eθ(zi|yi)]Ψ(β, yi) = 0 (26)

where Ψ(β, yi) = ω(Bi)[ψc(yi)− oi(β, c)]Bi.
Then the IF of β̂RES is

IFRES(yj) = [1− Eθ(zj|yj)][−Eθ(
∂

∂βT
[1− Eθ(zj|yj)][Ψ(β, yi)])]

−1Ψ(β, yi) (27)

The IF of RES estimator is bounded because the estimating function Ψ is bounded. There-

fore, β̂RES is as called as B-robust. Similarly, γ̂RES is B-robust because of the boundedness

of the estimating function (25).

2.6 Simulation Study

Here we compared ML and RES estimation methods for ZIP data with constant p with

and without contamination in y in each data set were randomly selected to be replaced

by y + 15. True values of p and β were specified as listed in Table 1 and were chosen to

make the non-degenerate components mean large (µ ranging between 2.78 and 20 over the

values of the covariate vector xi = (x1i, ..., x4i)
T and to give a moderate level of ZI (20

percent). And Bias, mean square error (MSE) and empirical size of a nominally 0.05 -

level Wald test for equality with the true value were calculated for each model parameter.

In addition, we provided the MSE for ζ = 1
n

∑n
i=1(1 − pi)µi , the average marginal mean

according to he model.Here the tuning quantile c was set to 0.01.

Generally speaking, these results favour the RES approach over the ML estimation. In the

absence of contamination RES performs slightly worse than ML for n=100 and essentially

the same for the larger sample size. It should be kept in mind that the degree of contami-

nation here is fairly extreme. Both the proportion (5 per cent) and magnitude (y + 15)of

outliers here are quite large. Under these extreme circumstances, the Wald tests under

RES estimation perform reasonably well, and seem to retain some value as inferential tools.

In contrast, the tests under ML estimation have been completely undermined.

To examine the effect of more moderate degrees of contamination, we ran simulations sim-

ilar in design to these but with 5 per cent of the responses increased by 7 rather than 15.

The results from those simulations are similar to those from the bottom half of Table 2,

with smaller but still quite substantial improvements in bias and MSE achieved using the

RES method.
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Because these results are, as one might expect, intermediate to those in the top and bottom

halves of Table 2, we do not report them in detail here for the sake of brevity.

Also from the simulation results it is observed that increasing sample size from n=100 to

200 has the expected effect of decreasing MSE for all parameters across these two methods.

3. Multivariate Zero-Inflated Poisson (MZIP) distribution

If the observed counts are not univariate, we need to consider the multivariate distri-

butions. If an excess of zero events occurs, the multivariate Zero-inflated Poisson model

should be considered instead. This MZIP model is a mixture of multidimensional degen-

erate distribution at point zero and a traditional multivariate Poisson (MPoi) distribution

as follows. Let Y be a random variable following MZIP distribution,

Y =

{
(0, 0, ..., 0), with probability ϕ

MPoi(y1, y2, ..., yn), with probability (1− ϕ),
(28)

where the observation follows a degenerate distribution at (0, 0, ..., 0) with probability

ϕ and a MPoi distribution with probability 1−ϕ where ϕε[0, 1]. It is a reasonable model,

since the MZIP distribution is mainly used for situations in which most defect counts are

0.

3.1 Multivariate Zero-Inflated Poisson regression Models

In this model, there are m log-link functions and an extra link function logit(ϕ) for the

Bernoulli probability ϕ,

lnλ′j =

p1∑

r−1
xrβrj , j = 1, 2, ...,m

logit(ϕ) = ln(
ϕ

1− ϕ) =

p2∑

r=1

grτr

where λand ϕ are not necessarily dependent on the same covariates. We have p1 parameter

β′s for each λ and p2 parameter τ ′s for ϕ. In summary, in the MZIP model, there are two

possible states, the perfect-state and the non-perfect state. If the observed counts are all

zeros, it is possible the system is in either the perfect or the non-perfect state. However,

if the observed counts are not all zeros, we know the system must be in the non-perfect

state.

3.2 EM Algorithm for MZIP Regression Models

The estimations for the MZIP regression coefficient matrix β and vector τ are also

obtained by the MLE method. For n1 + n2 observations following MZIP distribution, the
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log-likelihood function would be

lnL(τ, β, λ0) =
n∑

i=1

ln[
e
∑
gτ

1 + e
∑
gτ

+
1

1 + e
∑
gτ
e(m−1)λ0−

∑m
j=0 e

∑p1
r=1 xirβrj

]

+

n2∑

i=1

[ln
1

1 + e
∑
gτ

+ (m− 1)λ0 −
n∑

j=0

p1∑

r=1

xirβrj + lnφ(~yi)]

where we assume n1 is the number of observations ~y = (0, 0, ..., 0) and n2 is the number

of observations ~y 6= (0, 0, ..., 0) . For the first term of function, we cannot get a simple

first-order derivative. The computational difficulties make it impossible to solve the max-

imum of this likelihood function by the NR method. Hence, we utilize the EM algorithm

to maximize the likelihood.

The EM algorithm is performed by calculating the pseudo-values based on the current esti-

mates obtained from the nth iteration, and using that pseudo-values to maximize the lower

bound on the log-likelihood to obtain a new setting of estimates, and iterating between

the above two steps until some converge criterion is satisfied. The EM algorithm is set up

by introducing ”missing data” into the problem. In particular we choose latent a variable

w which is a two-point distribution:w = 1 the system is in perfect state(the observation

follows degenerate distribution at (0,0,...,0)); w = 0 the system is in non-perfect state (the

observation follows multi- variate Poisson (MPoi) distribution). Then the joint distribution

function of (w, ~y) would be

f(w, ~y|ϕ,~λ) =

{
ϕw[(1− ϕ)e−

∑
λj ]1−w, ~y = (0, 0, ..., 0)

(1− ϕ)e−
∑
λjφ(~y), ~y 6= (0, 0, ..., 0)

(29)

where we assume the w and ~y are not independent.The EM method can be organized

as follows. Given arbitrary initial values for (ϕ(0), ~β(0), λ
(0)
0 ), we can find the conditional

function and the mean of the variable w in the E step, and get the MLE for the joint

distribution to update the estimates. We repeat the EM-method until the convergence

conditions are satisfied.

E - step:

f(w|~y, ϕ(t), β(n), λ
(t)
0 )

M - step:

(ϕ(t+1), ~β(t+1), λ
(t+1)
0 ) = argmax

n∑

i=1

E
w|~y,ϕ(t),β(n),λ

(t)
0

[lnf(ϕ, β, λ0|w, ~y)]

In the (t+ 1)th E - step, we want to find the conditional distribution of w given the data

and the tth estimates for β, λ0, τ .

The conditional distribution of w is

f(w|~y, ϕ, φ) =
f(w, ~y|ϕ, φ)

f(~y|ϕ, φ)
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For convenience, we can organize the conditional distribution of w as two kinds of distri-

butions given different observations; when the random variables of ~y are all zero, w is a

Bernoulli distribution; when the random variables are not all zero, the system can only be

in the non-perfect state, where the w is a degenerate distribution at 0.

w|(~y, ϕ, φ) ∼
{
Bernoulli(p), ~y = (0, 0, ..., 0)

Degenerate(0), ~y 6= (0, 0, ..., 0)

where the Bernoulli random variable has the possibility of p = ϕ
ϕ+(1−ϕ)exp(−λj) with the

system in the perfect state. The conditional expectation can be derived from the distribu-

tion

Ewi|~yi,ϕi,βi,λi0(wi) =





ϕi
ϕi+(1−ϕi)exp(−λij) , ~y = (0, 0, ..., 0)

0, ~y 6= (0, 0, ..., 0)

In the (t + 1)th M-step, we find the maximum value of expectation of the log- likelihood

function for the above joint distribution.

The log-likelihood function is

lnL(τ, β, λ0) =

n1∑

i=1

wilnϕi + (1− wi)(ln(1− ϕi)−
m∑

j=0

λij)

+

n2∑

i=1

ln(1− ϕi) + lnf(~yi|λi)

=

n1∑

i=1

[wi

p2∑

r=1

girτr − ln(1 + e
∑p2
r=1 girτr)

+(1− wi)[(m− 1)λ0 −
m∑

j=1

e
∑p2
r=1 x

irβrj ]]

+

n2∑

i=1

[−ln(1 + e
∑p2
r=1 girτr) + lnf(~yi|λi, β)]

where the f(~yi|λi, β) is the MPoi distribution function having the probability mass function

as follows

f(y) = exp(−
m∑

j=0

λj)φ(y1, y2, ..., ym)

where

φ(y1, y2, ..., ym) =

min(y)∑

z0=0

(
m∏

j=1

λ
yj−z0
j

(yj − z0)!
)
λz00
z0!
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for convenience, We rewrite the above log-likelihood as the sum of two functions L1 and

L2

L1(τ) =

n1∑

i=1

(wi

p2∑

r=1

girτr)−
n1+n2∑

i=1

ln(1 + e
∑p2
r=1 girτr)

L2(β, λ0) =

n1∑

i=1

(1− wi)[(m− 1)λ0 −
m∑

j=1

e
∑p2
r=1 x

irβrj ] +

n2∑

i=1

f(~yi|λi, β)

L1 is a function of τ and L2 is a function of β and λ0. By the NR method we should derive

the first derivatives V and second derivatives J of the likelihood function, where

V = [V1, V2]
′

and (
J1 0

0 J2

)

Vectors V1 and V2 are the first derivatives of L1 and L2, respectively. They have following

items

∂lnE(L1)

∂τr2
=

n1∑

i=1

E[wi]gir2 −
n1+n2∑

i=1

gir2ϕi

∂lnE(L2)

∂βrij
=

n1∑

i=1

(E[wi]− 1)xirλ
′
ij +

n2∑

i=1

xirλ
′
ij(ϕij(1)− 1)

∂lnE(L2)

∂λ0
=

n1∑

i=1

(1− E[wi])(m− 1) + n2(m− 1) +

n2∑

i=1

(φir1)−
m∑

j=1

φij

r1 = (1, 2, ..., p1), j = (1, 2, ...,m)

With the NR method, we repeatedly update the estimates until they satisfy the given

criteria. After obtaining the (t + 1)th estimates, we check the convergence criterion first.

If it is satisfied, we can stop; if not, we continue to do the EM algorithm.

4. Robust estimation for multivariate zero-inflated Poisson

regression

Here we propose an algorithm which is a modification of the EM algorithm with the

property of robustness. Here also we choose latent a variable w which is a two-point distri-

bution:w = 1 the system is in perfect state(the observation follows degenerate distribution

at (0,0,...,0)); w = 0 the system is in non-perfect state (the observation follows MPoi dis-

tribution).Then the joint distribution function of (w, ~y) would be (29).
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The proposed algorithm begins with starting values for (τ (0), ~β(0), λ
(0)
0 ) and proceeds iter-

atively via the following steps until convergence. E - step:

f(w|~y, τ (t), β(n), λ(t)0 )

M - step for τ : Find γt+1 by maximizing L(τ). This can be accomplished by fitting a

binomial logistic regression of w(r) on design matrix G with binomial denominator equal

to one. It is equivalent to solving the estimating equation

1

n

n∑

i=1

[w
(
ir)− logit−1(

p2∑

r=1

girτr)]gir = 0 (30)

M - step for βandλ0: Find β(r+1) and λ
(
0r+1) by maximizing L2(β, λ0).It is equivalent

to solving the estimating equation

1

n

n∑

i=1

(1− w(r)
i )[(m− 1)λ0 −

m∑

j=1

e
∑p2
r=1 x

irβrj ] +

n2∑

i=1

lnf(~yi|λ0, β) = 0 (31)

Now we replace the estimating functions (30) and (31) from the M step of the EM algorithm

with robustified estimating functions. For this we downweight observations that fall in the

extreme upper and lower tail of the multivariate Poisson distribution in the estimating

function. Specifically, we suggest that τ (t+1), ~β(t+1) and λ
(t+1)
0 be found by solving the

following equations

1

n

n∑

i=1

w(gi)[w
(
ir)− logit−1(

p2∑

r=1

girτr)]gir = 0 (32)

1

n

n∑

i=1

(1− w(r)
i )w(xi)[(m− 1)λ0 −

m∑

j=1

e
∑p2
r=1 x

irβrj ] +

n2∑

i=1

lnf(~yi|λ0, β) = 0 (33)

where

f(~yi|λ0, β) = exp(−
m∑

j=0

λj)φ(y1, y2, ..., ym)

where

φ(y1, y2, ..., ym) =

min(y)∑

z0=0

(

m∏

j=1

λ
yj−z0
j

(yj − z0)!
)
λz00
z0!

and the function φ(y1, y2, ..., ym) takes the value zero for outliers present in the data.

Here, w(.) is a function to down weight large leverage points. A simple choice for w(gi)

that we use throughout this paper is
√

1− hi where hi is the ith diagonal element of

H = g(gT g)−1gT , with a similar definition for w(xi).



Jeena Joseph and Pinky Peter 179

Table 1: The 4-D zero-inflated Poisson observations

(y1, y2, y3, y4) (y1, y2, y3, y4) (y1, y2, y3, y4) (y1, y2, y3, y4)

(0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,1,2)

(0,0,0,0) (0,0,0,0) (0,3,0,0) (0,0,1,0)

(0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,1,2)

(0,1,0,0) (1,0,0,0) (0,0,0,0) (0,0,0,0)

(0,0,0,0) (1,0,0,0) (0,0,0,0) (0,0,0,0)

. . . .

. . . .

. . . .

(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

(0,1,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,0)

(0,4,0,2) (0,0,0,0) (0,0,0,0) (0,0,0,0)

5. Simulation Study

Here we simulate 100 4-dimensional y′s and the data set look like the one shown in

Table . Based o the link functions, we need the parameters τ , β, and the covariance λ0
to generate the desired data sets.The parameters we used are as following where there are

4 τ ′s and 4 β′sin each link function. We repeat the simulations 100 times in R to get 100

different count samples. τ = [0.9, 0.8, 0.4, 0.5], λ0 = 0.64, β =


1.70 0.54 0.31 0.09

0.54 1.20 0.43 0.78

0.31 0.43 1.40 0.31

0.09 0.78 0.31 1.6




The simulation studies are conducted in R to study the performance of maximum

likelihood estimation and the proposed estimation methods for MZIP data in the presence

of outliers, i.e. with contamination in y. In the contaminated scenario, 5 per cent of the

response y in the data set were randomly selected to be replaced by y + 15. Since solving

log(L) analytically is difficult, we use maxLik package in R software to find the mles. Table

2 and Table 3 give the maximum likelihood estimates of parameters with bias obtained by

EM algorithm. Table 4 and 5 give the estimates of parameters of the MZIP model with

bias obtained by the proposed technique. From these tables we observe that there are some

sort of improvements in the estimates because less bias in certain estimates of parameters.
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Table 2: MLE estimates for τ and λ0 with bias using EM algorithm

τ1 τ2 τ3 τ4 λ0

0.89(-0.09) 0.199(0.601) 0.39(0.01) 0.499(0.001) 0.6399(0.0001)

Table 3: MLE estimates for β with bias using EM algorithm

j 1 2 3 4

βj1 1.68(0.020) 0.5399(0.001) 0.309(0.001) 0.08(0.01)

βj2 0.5403(-0.003) 1.19(0.01) 0.429(-0.001) 0.77(0.01)

βj3 0.309(0.001) 0.429(-0.001) 1.39(0.01) 0.312(-0.002)

βj4 0.08(0.01) 0.779(0.001) 0.311(-0.001) 1.5(0.1)

Table 4: MLE estimates for τ and λ0 with bias using the proposed algorithm

τ1 τ2 τ3 τ4 λ0

0.899(-0.099) 0.799(0.001) 0.399(0.001) 0.5001(-0.0001) 0.6401(-0.0001)

Table 5: MLE estimates for β with bias using the proposed algorithm

j 1 2 3 4

βj1 1.699(0.001) 0.5399(0.001) 0.3100(0.09) 0.0899(0.0001)

βj2 0.539(-0.009) 1.1995(0.01) 0.4302(-0.002) 0.779(-0.019)

βj3 0.309(0.001) 0.429(0.001) 1.39(0.01) 0.309(-0.002)

βj4 0.089(0.001) 0.779(-0.019) 0.309(0.001) 1.599(0.001)
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6. Conclusion

In this paper, we introduce The ZIP and MZIP distributions and the corresponding re-

gression models. The EM method is used to obtain estimates of the regression coefficients.

A detailed review on Robust estimation for ZIP regression are also given. Along with

it, we propose a robust estimation for MZIP regression and conduct a simulation study.

In this paper the method adopted for robust estimation is to accommodate, rather than

eliminate, outliers and use a robust estimation methodology that minimizes their effect on

estimation of the model that is followed by the vast majority of data. On the other hand,

it needs some research study to obtain a more accurate estimating function to down weight

the extreme observations with increased number of variables.
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Abstract

Extended form of gamma density is considered. Pathway model of Mathai [A pathway

to matrix-variate gamma and normal densities, Linear Algebra and its Applications, 396

(2005)317-328] is utilized for the extension. Normalizing constants are evaluated by using

inverse Mellin transform techniques. A connection between extended gamma density and

extended form of inverse Gaussian is derived. Some extended mixtures are discussed.

Key words: Pathway model, extended gamma, H−function.

1. Introduction

In probability theory, the gamma density is a two-parameter family of continuous prob-

ability density with support on (0,∞). Its probability density function is given by

f(x;m, p) =
mp

Γ(p)
xp−1e−mx, (1)

for x > 0, where p > 0 is the shape and m > 0 is the scale parameter. In this paper this

density is given a generalization or extension with the help of pathway model of Mathai

(2005). In order to create a distributional pathway for proceeding from one functional form

to another a pathway parameter α is introduced and a pathway model is created. For the

real scalar case the pathway model is the following, for x > 0

g1(x) = k1x
γ−1[1− a(1− α)xδ]

η
1−α (2)
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a > 0, δ > 0, 1− a(1− α)xδ > 0, γ > 0, η > 0, where k1 is the normalizing constant and

α is the pathway parameter. For α < 1 the model remains as a generalized type-1 beta

model in the real case. When α > 1 we may write 1 − α = −(α − 1) so that (2) assumes

the form of generalized type-2 beta model, given by

g2(x) = k2x
γ−1[1 + a(α− 1)xδ]−

η
α−1 , x > 0, (3)

where k2 is the normalizing constant. When α → 1 the forms in (2) and (3) reduce to

generalized gamma form

g3(x) = k3x
γ−1e−aηx

δ
, x > 0, (4)

where k3 is the normalizing constant, see Mathai & Haubold (2007) and Mathai & Moschopou-

los (1991). More families are available when the variable is allowed to vary over the real

line.

In order to extend the gamma density we use the model in (3). Let us take the extended

generalized models as

gβ(x) = kβx
γe−ax

δ
[1 + b(β − 1)x−ρ]−

1
β−1 , x > 0, a > 0, b > 0, δ > 0, ρ > 0, β > 1, (5)

gα(x) = kαx
γ [1 + a(α− 1)xδ]−

1
α−1 e−bx

−ρ
, x > 0, a > 0, b > 0, δ > 0, ρ > 0, α > 1, (6)

and

g(x) = kxγe−ax
δ
e−bx

−ρ
, x > 0, a > 0, b > 0, δ > 0, ρ > 0. (7)

where kβ, kα and k are the normalizing constants. Note that

lim
β→1

gβ(x) = lim
α→1

gα(x) = g(x). (8)

If the generalized gamma is a limiting or stable situation then the pathway model gives

all the paths leading to this stable or limiting distribution. We also give interpretations

in terms of special functions (Mathai (1993), Mathai & Saxena (1978) or Kilbas & Saigo

(2004)) in statistical distribution theory.

2. Evaluation Of The Normalizing Constant Of The Extended

Gamma Density

In order to find the normalizing constant, we have evaluate the total integral. Let

k−1β =

∫ ∞

0
xγe−ax

δ
[1 + b(β − 1)x−ρ]−

1
β−1 dx, a > 0, b > 0, δ > 0, ρ > 0, β > 1. (9)

Here the integrand can be taken as a product of positive integrable functions and then we

can apply statistical distribution theory to evaluate this integral. Let x1 and x2 be real



Dhannya P. Joseph 185

scalar independently distributed random variables having densities

f1(x1) =

{
c1x

γ+1
1 e−ax1

δ
, 0 < x1 <∞, γ + 2 > 0, a > 0

0, elsewhere
(10)

and

f2(x2) =

{
c2[1 + (β − 1)x2

ρ]
− 1
β−1 , 0 < x2 <∞, ρ > 0, β > 1

0, elsewhere.
(11)

where c1 and c2 are normalizing constants. For the method to be discussed we need not

evaluate the normalizing constants explicitly. Let us transform x1 and x2 to u = x1x2
and v = x1. Then from standard procedures in statistical distribution theory the marginal

density of u is given by

gu(u) =

∫

v

1

v
f1(v)f2(

u

v
)dv

= c1c2

∫ ∞

0
vγe−av

δ
[1 + b(β − 1)v−ρ]−

1
β−1 dv, where b = uρ. (12)

Let us evaluate the density through moments. We will take the hth moment for h = s− 1

where s is a complex variable. This is done so that we can apply the theory of Mellin and

inverse Mellin transforms to evaluate the density in explicit form.

E(us−1) = E(xs−11 )E(xs−12 ), due to statistical independence of x1 and x2

=
c1c2Γ(γ+1+s

δ )Γ( sρ)Γ( 1
β−1 − s

ρ)

δρa
γ+s+1
δ (β − 1)

s
δΓ( 1

β−1)
, (13)

<(γ + s+ 1) > 0, <(s) > 0, <( 1
β−1 − s

ρ) > 0.

Here we have the moments available for a complex parameter s. In this case we can

apply the theory of inverse Mellin transform to determine the density of u uniquely. Look-

ing at the (s− 1)th moment as the Mellin transform of the corresponding density and then

taking the inverse Mellin transform we get the density of u,

gu(u) =
c1c2

δρa
γ+1
δ Γ( 1

β−1)

1

2πi

∫

L
Γ(
γ + 1

δ
+
s

δ
)Γ(

s

ρ
)Γ(

1

β − 1
− s

ρ
)
(
ua

1
δ (β − 1)

1
ρ )−sds. (14)

This contour integral can be written as an H-function (Mathai & Saxena (1978)). That is,

gu(u) =
c1c2

δρa
γ+1
δ Γ( 1

β−1)
H2,1

1,2

[
a

1
δ (b(β − 1))

1
ρ

∣∣∣∣
(1− 1

β−1
, 1
ρ
)

(0, 1
ρ
),( γ+1

δ
, 1
δ
)

]
, b = uρ, (15)

where H− function is defined as

Hm,n
p,q

[
z
∣∣(a1,α1),...,(ap,αp)

(b1,β1),,...,(bq ,βq)

]
=

1

2πi

∫

L
φ(s) z−sds, (16)
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where

φ(s) =

{∏m
j=1 Γ(bj + βjs)

} {∏n
j=1 Γ(1− aj − αjs)

}
{∏q

j=m+1 Γ(1− bj − βjs)
} {∏p

j=n+1 Γ(aj + αjs)
} ,

where αj , j = 1, 2, ..., p and βj , j = 1, 2, ..., q are real positive numbers, aj , j = 1, 2, ..., p

and bj , j = 1, 2, ..., q are complex numbers, L is a contour separating the poles of Γ(bj +

βjs), j = 1, 2, ...,m from those of Γ(1 − aj − αjs), j = 1, 2, ..., n. Comparing equations

(12) and (15)

k−1β =

∫ ∞

0
xγe−ax

δ
[1 + b(β − 1)x−ρ]−

1
β−1 dx

=
1

δρa
γ+1
δ Γ( 1

β−1)
H2,1

1,2

[
a

1
δ (b(β − 1))

1
ρ

∣∣∣∣
(1− 1

β−1
, 1
ρ
)

(0, 1
ρ
),( γ+1

δ
, 1
δ
)

]
. (17)

In a similar way we can evaluate the normalizing constants of the functions gα(x) and g(x).

For evaluating the normalizing constant of gα(x), we take f1(x1) as

f1(x1) =

{
m1x

γ+1
1 [1 + a(α− 1)x1

δ]−
1

α−1 , 0 < x1 <∞, γ + 2 > 0, a > 0, δ > 0

0, elsewhere
(18)

and f2(x2) as

f2(x2) =

{
m2e

−x2ρ , 0 < x2 <∞, ρ > 0, β > 1

0, elsewhere,
(19)

and proceed as before we get the normalizing constant kα of gα(x), where

k−1α =

∫ ∞

0
xγ [1 + a(α− 1)xδ]−

1
α−1 e−bx

−ρ
dx

=
1

δρ(a(α− 1))
γ+1
δ Γ( 1

α−1)
H2,1

1,2

[
(a(α− 1))

1
δ b

1
ρ

∣∣∣∣
(1− 1

β−1
+ γ+1

δ
, 1
δ
)

(0, 1
ρ
),( γ+1

δ
, 1
δ
)

]
, b = uρ. (20)

For evaluating the normalizing constant of g(x), we take the limit β → 1 in (17) or α→ 1

in (20). By taking limits we apply Stirling’s approximations for gamma functions, see for

example Mathai (1993), given by

Γ(z + a)→ (2π)
1
2 zz+a−

1
2 e−z, for |z| → ∞ and a is bounded (21)

to the gamma ratios in the H− functions in equation (17) or (20) and we obtain

k−1 =

∫ ∞

0
xγe−ax

δ
e−bx

−ρ
dx

=
1

δρa
γ+1
δ

H2,0
0,2

[
a

1
δ b

1
ρ

∣∣∣∣
(0, 1

ρ
),( γ+1

δ
, 1
δ
)

]
, b = uρ, (22)
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3. Inverse Gaussian As A Particular Case

Note that one form of the inverse Gaussian probability density function is given by

h(x) = cx−
3
2 e
−λ

2
( x
µ2

+ 1
x
)
, µ 6= 0, x > 0, λ > 0,

where c is the normalizing constant (see Mathai (1993)). Put γ = −3
2 , δ = 1, ρ = 1, a =

λ
2µ2

, b = λ
2 in g(x) given in equation (7), we can see that g(x) will become the inverse

Gaussian density. Since gβ(x) and gα(x) are the extensions of g(x), we can say that gβ(x)

and gα(x) are the extended forms of inverse Gaussian density.

The integral k−1 in equation (22) can be used to evaluate the moments of inverse

Gaussian density. Also reaction rate probability integral in nuclear reaction rate theory,

Krätzel integrals in applied analysis and the like will become special cases of the integral

k−1 (see Krätzel (1979), Haubold & Kumar (2008), Mathai & Haubold (1988)).

4. Laplace Transform Of Extended Generalized Gamma

We have

gβ(x) = kβx
γe−ax

δ
[1 + b(β − 1)x−ρ]−

1
β−1 .

Put δ = 1 in gβ(x), then the Laplace transform of gβ(x) is given by

Lgβ (t) = kβ

∫ ∞

0
xγe−x(a+t)[1 + b(β − 1)x−ρ]−

1
β−1 dx

= c−1β

( a

a+ t

)γ+1
H2,1

1,2

[
(a+ t)(b(β − 1))

1
ρ

∣∣∣∣
(1− 1

β−1
, 1
ρ
)

(0, 1
ρ
),(γ+1,1)

]
, (23)

where cβ = H2,1
1,2

[
a(b(β − 1))

1
ρ

∣∣∣∣
(1− 1

β−1
, 1
ρ
)

(0, 1
ρ
),(γ+1,1)

]
.

5. Connection To Extended Form Of Gamma

If ρ < 0 and δ = 1 in gβ(x) of equation (5), then the integral k−1β becomes

k−11β
=

∫ ∞

0
xγe−ax[1 + b(β − 1)xµ]

− 1
β−1 dx, a > 0, b > 0, µ = −ρ > 0, β > 1. (24)

Note that this will be the Laplace transform of the extended form of the gamma density.

Extended in the sense that when we take the limit as β −→ 1, it will be the Laplace trans-

form of the generalized gamma density. The Laplace transform of this density also provides
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the moment generating function of extended gamma density thereby the moment gener-

ating functions of extended forms of Weibull, chisquare, Reyleigh, Maxwell-Boltzmann,

exponential and other densities in this general class. Observe that the structure in (24)

is different from those considered so far because the exponents in both the factors are

positive. In the previous cases we had one exponent positive and the other negative. In

order to evaluate this integral let us consider the transformation u = x1
x2

and v = x2, where

x1 and x2 are real scalar independently distributed random variables. Let the densities of

x1 and x2 be

h1(x1) =

{
c3e
−x1 , 0 < x1 <∞

0, elsewhere
(25)

and

h2(x2) =

{
c4x

γ−1
2 [1 + b(β − 1)x2

µ]
− 1
β−1 , x2 > 0, b > 0, γ > 0, µ > 0, β > 1

0, elsewhere,
(26)

where c3 and c4 are the normalizing constants. Then the density of u, denoted by gu(u),

is given by

gu(u) =

∫ ∞

0
vg1(uv)g2(v)dv

= c3c4

∫ ∞

0
ve−uvvγ−1[1 + b(β − 1)vµ]

− 1
β−1 dv. (27)

Here

E(us−1) = E(
x1
x2

)s−1 = E(x1)
s−1E(x2)

1−s,because of independance

= c3c4
Γ(s)Γ(γ+1

µ − s
µ)Γ( 1

β−1 −
γ
µ − 1

µ + s
µ)

µ(b(β − 1))
γ+1−s
µ Γ( 1

β−1)
, (28)

for <(s) > 0, <(γ − s+ 1) > 0, <( 1
β−1 −

γ
µ − 1

µ + s
µ) > 0.

Taking inverse Mellin transform and comparing with (27) (with u = a)

I1β =

∫ ∞

0
e−avvγ [1 + b(β − 1)vµ]

− 1
β−1 dv

=
1

µ(b(β − 1))
γ+1
µ Γ( 1

β−1)
H2,1

1,2

[
a

b
1
µ (β − 1)

1
µ

∣∣∣∣
(1− γ+1

µ
, 1
µ
)

(0,1),( 1
β−1
− γ
µ
− 1
µ
, 1
µ
)

]
. (29)

Now put ρ = −1 in fα(x) of equation (??), then the integral Iα becomes

I1α =

∫ ∞

0
xγe−bx[1 + a(α− 1)xδ]−

1
α−1 dx, a > 0, b > 0, δ > 0, α > 1. (30)
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Note that this integral will be similar to I1β .

6. Extended Gamma Mixtures

6.1 Poisson-Extended Generalized Gamma

One of the first to consider inverse Gaussian as a mixing tool was Holla (1966). He assumed

that the mean parameter θ of a Poisson law followed the inverse Gaussian distribution and

arrived at the compound law which come to be known as the Poisson-inverse Gaussian

law. Here we assume that the parameter θ of the Poisson law

gx|θ(x|θ) =
θδxe−θ

δ

x!
, θ > 0, δ > 0, x = 0, 1, 2 · · · , (31)

following the extended generalized gamma model

πθ(θ) = kβ1θ
γe−aθ

δ
[1 + b(β − 1)θ−δ]−

1
β−1 , θ > 0, a > 0, β > 1, b > 0, δ > 0, (32)

where

kβ1 = d−11 δ2a
γ+1
δ Γ(

1

β − 1
), (33)

where

d1 = H2,1
1,2

[
(ab(β − 1))

1
δ

∣∣∣∣
(1− 1

β−1
, 1
δ
)

(0, 1
δ
),( γ+1

δ
, 1
δ
)

]
. (34)

Then we can find out the Poisson-extended generalized gamma law and is given by

p1(x) = kβ1

∫ ∞

0
gx|θ(x|θ)πθ(θ)dθ

=
kβ1
x!

∫ ∞

0
θγ+δxe−(a+1)θδ [1 + b(β − 1)θ−δ]−

1
β−1 dθ

= d−11

a
γ+1
δ

x!(a+ 1)
γ+δx+1

δ

H2,1
1,2

[
((a+ 1)b(β − 1))

1
δ

∣∣∣∣
(1− 1

β−1
, 1
δ
)

(0, 1
δ
),( γ+δx+1

δ
, 1
δ
)

]
, x = 0, 1, 2 · · · .(35)

6.2 Exponential-extended generalized gamma

Bhattacharya & Kumar (1986) proposed a model for life time distribution by compounding

the exponential distribution with the inverse Gaussian law, to obtain the exponential-

inverse Gaussian law. Here we are going to find the exponential-extended generalized

gamma law. Consider the exponential density with parameter λ

gx|λ(x|λ) = λe−λx, λ > 0, x > 0, (36)
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and assume that the parameter λ has a prior extended generalized gamma density πλ(λ)

πλ(λ) = kβ2λ
γe−aλ[1 + b(β − 1)λ−ρ]−

1
β−1 , ρ > 0, a > 0, β > 1, b > 0, λ > 0 (37)

where

kβ2 = d−12 ρaγ+1Γ(
1

β − 1
), (38)

where

d2 = H2,1
1,2

[
a(b(β − 1))

1
ρ

∣∣∣∣
(1− 1

β−1
, 1
ρ
)

(0, 1
ρ
),(γ+1,1)

]
. (39)

Then we get the exponential-extended generalized gamma law as

p2(x) = kβ2

∫ ∞

0
gx|λ(x|λ)πλ(λ)dλ

= kβ2

∫ ∞

0
λγ+1e−λ(a+x)[1 + b(β − 1)λ−ρ]−

1
β−1 dλ

= d−12

aγ+1

(a+ x)γ+2
H2,1

1,2

[
(a+ x)(b(β − 1))

1
δ

∣∣∣∣
(1− 1

β−1
, 1
ρ
)

(0, 1
ρ
),(γ+2,1)

]
, x > 0. (40)

6.3 Gamma-extended generalized gamma

Consider the generalized gamma density

gx|µ(x|µ) =
δµ

ν+1
δ

Γ(ν+1
δ )

xνe−µx
δ
, x > 0, δ > 0, µ > 0 ν > 0 (41)

and assume that the parameter µ has a prior extended generalized gamma density πµ(µ)

πµ(µ) = kβ2µ
γe−aµ[1 + b(β − 1)µ−ρ]−

1
β−1 , ρ > 0, a > 0, β > 1, b > 0, µ > 0 (42)

Then we get the gamma-extended generalized gamma law as

p3(x) = kβ2

∫ ∞

0
gx|µ(x|µ)πµ(µ)dµ

= d−12 δxν
aγ+1

Γ(ν+1
δ )(a+ xδ)γ+1+ ν+1

δ

H2,1
1,2

[
(a+ xδ)(b(β − 1))

1
ρ

∣∣∣∣
(1− 1

β−1
, 1
ρ
)

(0, 1
ρ
),(γ+1+ ν+1

δ
,1)

]
,

x > 0. (43)

6.4 Gaussian-extended generalized gamma

Sankaran (1968) proposed the Normal-inverse Gaussian model. Consider the normal den-

sity

gx|σ(x|σ) =
1√
(2π)

e−
x2

2σ2 , σ > 0, −∞ < x <∞, (44)
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and assume that the parameter σ has a prior extended generalized gamma density

πσ(σ) = kα1σ
γ [1 + a(α− 1)σδ]−

1
α−1 e−bσ

−2
, σ > 0, a > 0, b > 0, δ > 0. (45)

where

kα1 = 2d−13 δ(a(α− 1))
γ+1
δ Γ(

1

α− 1
), (46)

where

d3 = H2,1
1,2

[
(a(α− 1))

1
δ (b)

1
2

∣∣∣∣
(1− 1

β−1
+ γ+1

δ
, 1
δ
)

(0, 1
2
),( γ+1

δ
, 1
δ
)

]
. (47)

Now we get the Normal-extended generalized gamma law as

p4(x) = kα

∫ ∞

0
gx|σ(x|σ)πσ(σ)dσ

= kα

∫ ∞

0
σγ−1e−

x2

2
σ−2

[1 + a(α− 1)σδ]−
1

α−1 dσ

= d−13 (a(α− 1))
1
δH2,1

1,2

[
(a(α− 1))

1
δ (
x2

2
+ b)

1
2

∣∣∣∣
(1− 1

β−1
+ γ
δ
, 1
δ
)

(0, 1
2
),( γ

δ
, 1
δ
)

]
,

−∞ < x <∞. (48)

7. Conclusions

By using the pathway parameter we can go to extended densities where the standard

densities become particular cases. Through the pathway parameter α or β we can go

from one functional form to another. If the standard densities are considered as stable

then many unstable and chaotic behavior showing densities are covered using the extended

model considered here. The graphs explained here show the behavior of the extended

densities and the standard densities. These densities have wide range of applications in

physics and statistics.
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Abstract

The Wilks’ Lambda Statistic (likelihood ratio test, LRT) is a commonly used tool for

inference about the mean vectors of several multivariate normal populations. It is well

known that the Wilk’s Lambda Statistic which is based on classical estimates of popu-

lation mean and dispersion matrices is extremely sensitive to influence of outliers. This

study is an attempt to propose a robust version of multivariate analysis of variance by

replacing the classical Wilk’s Lambda statistic into a robust one through substituting the

classical estimates by a highly robust and efficient kurtosis estimates and discuss about

its properties. The approximate distribution of the proposed robust statistic was derived

using simulations and its fitting is examined using QQ – plots. Monte Carlo simulations

were used to investigate the efficiencies of the proposed method. The level of significance

and power of the proposed robust MANOVA are compared with that of classical MANOVA

using the size -power curve. Finally, the method is applied to well-known real data sets to

evaluate its performance.

Key words: Robustness, Kurtosis estimates, Wilks’ Lambda, MANOVA.

1. Introduction

One-way multivariate analysis of variance (MANOVA) deals with testing the null hy-

pothesis of equal mean vectors across the g considered groups. The setup is similar to

that of the one-way univariate analysis of variance (ANOVA) but the inter-correlations of

the independent variables are taken into account, i.e. the variables are considered mul-

tivariate. Under the classical assumptions that all groups arise from multivariate normal

distributions, many test statistics are discussed in the literature, one of the most widely

used being the likelihood ratio test. This test statistic is better known as Wilk’s Lambda
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in MANOVA. The Wilks’ Lambda is reported as part of the test output in almost all

statistical packages. However, this measure which uses the classical normal theory as well

as the inference based on it can be adversely affected by outliers present in the data. The

non-robustness of the Wilk’s Lambda statistic in the context of variable selection in linear

discriminant analysis was demonstrated in Todorov (2007a).

The effect of outliers on the quality of the hypothesis test based on the classical Wilk’s

Lambda statistics will be illustrated in the example and the simulation study in the coming

sections. Therefore we propose to use robust estimators instead of the classical ones for

computing Wilk’s Lambda statistic. The non-robustness of the normal theory based test

statistic has led many other authors also to search for alternatives. For this purpose we will

use the Kurtosis estimator of Pena and Prieto (2001) which is a highly robust estimator

of location and scatter. Since the distribution of the robust Wilk’s Lambda statistic based

on kurtosis differs from the classical one it is necessary to find a good approximation for

this distribution. We construct an approximate distribution based on a Monte Carlo study

and examined its accuracy. The adaptations of the kurtosis estimator for computing the

common covariance matrix is also summarized in the coming sections.

Monte Carlo simulations are used to evaluate the performance of the proposed test

statistic under various distributions in terms of the simulated significance levels, its power

functions and robustness. The power of the robust and classical statistic is compared using

size-power curves, for the construction of which no knowledge about the distribution of the

statistic is necessary (see Davidson and McKinnon, 1998). In this study we also describe

the design of the simulation study and its results and presented the illustrative example.

2. The Robust Wilk’S Lambda Statistic

Let xk1, xk2, . . . , xknk
be nk independent and identically distributed p-dimensional ob-

servations from a continuous p-variate distribution with distribution function Fk(u) where

k = 1, 2, . . . , g and the number of groups g ≥ 2. If all g distributions are exactly the same

but only their locations differ we have

Fk(u) = F (u− µk)

Then the hypothesis we want to test is that all Fk are identical, hence

H0 : µ1 = µ2 = · · · = µg

against the alternative hypothesis

Ha : µi 6= µjfor at least one i 6= j

Under the classical assumptions that all groups arise from multivariate normal distribu-

tions, the most widely used test statistic is the Wilk’s Lambda (the likelihood ratio test).
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The Wilks’ Lambda statistic is the ratio of the within generalized dispersion to the total

generalized dispersion. The within generalized dispersion is the determinant of the within-

group sums of squares and cross-products matrix W and the total generalized dispersion

is the determinant of the total sums of squares and cross-products matrix T (see Johnson

and Wichern, 2002). The statistic

ΛWilks =
det(W)

det(T)
(1)

takes values between zero and one ( here det(A) means the determinant of A).

In order to obtain a robust procedure with high breakdown point for inference about the

means in the one-way MANOVA model we construct a robust version of the Wilk’s Lambda

statistic by replacing the classical estimators by the kurtosis estimators. The Kurtosis

estimator is introduced by Pena and Prieto (2001) looks for a subset of h observations

which optimize (maximize or minimize) the kurtosis coefficient. The method is affine

equivariant, and it shows a very satisfactory practical performance, especially for large

sample space dimensions and concentrated contamination. The method also produces

good robust estimates for the covariance matrix, with low bias.

We start by finding estimates of the group means m0
k and the common covariance

matrix Ckur based on the kurtosis estimate. The proposed estimators become

m0
k =

∑u
i xik
|U |

Ckur =

∑u
i (xik −m0

k)(xik −m0
k)
′

(|U | − 1)
(2)

where U is the set of all observations is not labeled as outliers, —U— denotes the number

of observations in this set. Using this obtained estimates mk and Ckur ijn (2) we can

calculate the robust distances (Pena and Prieto, 2001) as

RDik =
√

(xik −m0
k)
′Ckur(xik −m0

k) (3)

With these robust distances we can define a weight for each observation xik, i = 1, . . . , nkandk =

1, . . . , g by using the weight function defined as With these weights we can calculate the

final estimates, namely the group means mk the within-groups sum of squares and cross-

products matrix WR, the between-groups sum of squares and cross-products matrix BR
and the total sum of squares and cross-products matrix TR = WR+BR which are necessary

for constructing the robust Wilks’ Lambda ΛR statistic as defined in equation (1).
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mk =

∑nk
i=1wikxik
vk

WR =

g∑

k=1

nk∑

i=1

wik(xik −mk)(xik −mk)
′

BR =

g∑

k=1

vk(mk −m)(mk −m)′

TR =

g∑

k=1

nk∑

i=1

wik(xik −m)(xik −m)′ = WR +BR (4)

where vk are the sums of the weights group k for k = 1, . . . , g and v is the total sum of

weights: vk =
∑nk

i=1wik and v =
∑nk

i=1 vik. Substituting these estimates of the matrices W

and T into equation (1) we obtain a robust version of the test statistic Λ given by

ΛR =
det(WR)

det(TR)
. (5)

For computing the kurtosis and related estimators the kurtosis algorithm of Pena and

Prieto will be used as implemented in the Matlab software.

3. The Approximate Distribution Of Robust Wilk’S Lambda

The distribution of ΛWilks is considered by Anderson (1958) as a ratio of two Wishart

distributions but it is so complicated that except for some special cases it is hardly usable

in practice. One of the most popular approximations is Bartlett’s χ2 approximation given

by

−(n− 1− (p+ g)/2)lnΛWilks ≈ χ2
p(g−1) (6)

where n =
∑g

i=1 ni. Analogously to this χ2 approximation of the classical statistic we can

assume for ΛR the following approximation:

LR = lnΛR ≈ dχ2
q (7)

and then express the multiplication factor d and the degrees of freedom of the χ2distribution

q through the expectation and variance of LR

E[LR] = dq

(8)

V ar[LR] = 2d2q

d = E[LR]
1

q
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q = 2
E[LR]2

V ar[LR]

Since it is not possible to obtain the mean and variance of the robust Wilks’ Lambda

statistic ΛR analytically, they will be determined by simulation. These values will be used

to approximate the true distribution of ΛR
For a given dimension p, number of groups g and sample sizes of each group ni = 1, 2, ..., g,

samples Xk = (x1, ..xn) of size n = ni from the standard normal distribution will be

generated, i.e.xi N(0,p ). For each sample the robust Wilk’s Lambda statistic ΛR based

on the kurtosis estimator will be calculated. After performing m=3000 trials, mean and

variance of ΛR will be obtained as

ave(ΛR) =
1

m

m∑

k=1

ΛkR

var(ΛR) =
1

m− 1

m∑

k=1

(ΛkR − ave(ΛR))2

Substituting these values into equation (9) we can obtain estimates for the constants d and

q which in turn will be used in equation (8) to obtain the approximate distribution of the

robust Wilk’s Lambda statistic ΛR.

Now we will investigate the accuracy of this approximation. For several values of the

dimension p, the number of groups g and the sample sizesni; i = 1, 2, ..., g , of each

group,m = 3000 samples from standard normal distribution will be generated and for

each of them ΛR will be calculated. The empirical distribution of these 3000 statistics will

be compared to the approximate distribution given by equation (8) by QQ − plots, some

of which are shown in Figure 1 and 2 for two groups. It is seen from the plots that the

approximation is very precise for large and small sample sizes. The following are QQ -

plots for the robust Wilk’s Lambda statistics ΛR for two groups and several values for p

and n =
∑
nk.

4. Monte Carlo Simulations

In this section a Monte Carlo study is undertaken to assess the performance of the

proposed statistic. The assessment of the performance of any test statistics involves two

measures – the attained significance level and the power of the test. Additionally we will

investigate the behavior of the robust statistic in the presence of outliers and will compare

the results to the classical Wilks’ Lambda statistic.

4.1 Significance Levels

First we study the attained significance level (i.e., Type I error rate or size) of the

proposed robust test. We will consider several dimensions p = 2, 4, 6, 8, 10, numbers of
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Figure 1: p = 6, n1 = 30, n2 = 30 and p = 2, n1 = 100, n2 = 100.

Figure 2: p = 4, n1 = 50, n2 = 20 and p = 8, n1 = 100, n2 = 10.
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Table 1: Selected group sizes for the simulation study.

Two groups Three groups

(n1,n2) (n1,n2,n3)

(10, 10) (10, 10, 10)

(20, 20) (20, 20, 20)

(30,30) (30, 30, 30)

(50, 50) (50, 50, 50)

(100, 100) (100, 100, 100)

(200, 200) (20, 20, 10)

(20, 10) (30, 30, 10)

(30, 10) (50,50,20)

(50, 10) (100,50,20)

groups g = 2, 3 and sample sizes nk; k = 1, 2, ..., g. Equal as well as unequal group sizes

are investigated. The sample sizes for two and three groups are selected as shown in Table

1. Only the cases where, p > 2ni for all i = 1, . . . , g were considered, since otherwise the

kurtosis estimate is not computable.

Under the null hypothesis H0 in one-way MANOVA we assume that the observations

come from identical multivariate distributions, i.e. H0 : µ1 = µ2 = · · · = µg.Since the

considered statistics are affine equivariant, without loss of generality we can assume each

location vector µito be null vector, i.e. µi = (0, . . . , 0)t and the covariance matrix to be

p. Thus we generate n =
∑g

i=1 ni p -variate vectors distributed as N(0, Ip) and calculate

the classical statistic ΛWilks and the robust version based on kurtosis estimates ΛR.This is

repeated m = 3000 and the percentages of values of the test statistics above the appropri-

ate critical value of the corresponding approximate distribution are taken as an estimate

of the true significance level. The classical Wilk’s Lambda is compared to the Bartlett

approximation given by equation (2) while the kurtosis based Wilk’s Lambda is compared

to the approximate distribution given in equation (3). The true significance levels α are

taken to be 0.10,0.05 and 0.01 which together with the number of replications m = 3000.

In Table 2 the results for two groups are shown. It is clearly seen that the difference

between the actual cutoff and the nominal value is very small, i.e. the approximations are

capable to keep the significance levels across all investigated combinations of dimension p

and sample sizes. The results for two groups are similar.

4.2 Power Comparison

In order to assess the power of the robust Wilk’s Lambda statistics we will generate
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Table 2: Significance levels of test statistics Λwilks and ΛR for multivariate normal distri-

butions in the case of two groups for several values of the dimension p and the sample size

n = n1 + n2 (N=3000 Monte Carloreplications,true significance level α = 0.1, 0.05Λ0.01)
α=0.1 α=0.05 α=0.01

p n1 n2 Λwilks ΛR Λwilks ΛR Λwilks ΛR
11 10 10 0.097 0.092 0.050 0.045 0.010 0.010

2 20 20 0.099 0.097 0.053 0.040 0.009 0.010

2 30 30 0.100 0.079 0.050 0.040 0.007 0.010

2 50 50 0.101 0.076 0.046 0.040 0.006 0.010

2 100 100 0.093 0.08 0.043 0.040 0.010 0.010

2 200 200 0.109 0.099 0.057 0.040 0.009 0.010

2 20 10 0.095 0.102 0.047 0.040 0.010 0.010

2 30 10 0.097 0.081 0.050 0.050 0.013 0.010

2 50 20 0.102 0.081 0.055 0.050 0.013 0.010

2 100 10 0.099 0.094 0.049 0.040 0.010 0.010

4 10 10 0.098 0.097 0.049 0.050 0.009 0.010

4 20 20 0.094 0.083 0.046 0.050 0.009 0.010

4 30 30 0.104 0.086 0.051 0.050 0.011 0.010

4 50 50 0.107 0.092 0.058 0.040 0.011 0.010

4 100 100 0.105 0.099 0.051 0.050 0.012 0.010

4 200 200 0.088 0.108 0.042 0.040 0.012 0.010

4 20 10 0.097 0.113 0.048 0.050 0.009 0.012

4 30 10 0.088 0.099 0.046 0.040 0.010 0.010

4 50 20 0.097 0.130 0.053 0.048 0.011 0.010

4 100 10 0.088 0.100 0.050 0.043 0.009 0.008

6 20 20 0.098 0.087 0.047 0.045 0.009 0.010

6 30 30 0.099 0.080 0.054 0.051 0.013 0.010

6 50 50 0.106 0.070 0.052 0.046 0.013 0.010

6 100 100 0.109 0.120 0.056 0.045 0.011 0.008

6 200 200 0.108 0.110 0.051 0.043 0.010 0.008

6 50 20 0.109 0.09 0.052 0.049 0.010 0.009

8 20 20 0.102 0.100 0.051 0.041 0.012 0.010

8 30 30 0.101 0.070 0.049 0.047 0.011 0.010

8 50 50 0.112 0.100 0.055 0.045 0.012 0.010

8 100 100 0.096 0.100 0.049 0.057 0.011 0.010

8 200 200 0.092 0.100 0.047 0.042 0.007 0.010

8 50 20 0.095 0.100 0.047 0.047 0.009 0.010

10 30 30 0.100 0.100 0.049 0.053 0.012 0.010

10 50 50 0.097 0.100 0.052 0.043 0.010 0.010

10 100 100 0.098 0.100 0.050 0.050 0.013 0.010

10 200 200 0.112 0.100 0.055 0.050 0.015 0.010
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data under an alternative hypothesis (Ha : notallµi, i = 1, . . . , g) and will examine the

frequency of incorrectly failing to reject H0 (i.e. the frequency of type II errors). The same

combinations of dimensions p, number of groups g and sample sizes ni, i = 1, . . . , g as in

the experiments for studying the significance levels will be used. There are infinitely many

possibilities for selecting Ha but for the purpose of the study we will use the following

fixed alternatives : all groups πj , j = 1, . . . , g come from multivariate normal distribution

with the same spherical covariance matrix Ip; the mean of the first group is the origin, the

mean of the second group is at distance d = 1 along the first coordinate, the mean of the

third group is at distance d = 1 along the second coordinate and so on. More precisely, the

data sets are generated from the following p-dimensional normal distributions, where each

group πj , j = 1, . . . , g, has a different mean µj and all of them have the same covariance

matrix Ip

πj ∼ Np(µj , Ip), j = 1, . . . , g (9)

with µ1 = (0, 0, ..., 0)t;µ2 = (d, 0, ..., 0)t;µ3 = (0, 0, d, ..., 0)t; ...;µg = (0, 0, ...d, 0)t.

The classical and the robust test statistics are computed and the rejection frequency (out

of m=3000 runs) where the statistics exceeds its appropriate critical value is the estimate

for the specific configuration.

The power of the two statistics can be visually compared by simulating size-power

curves under fixed alternatives, as proposed by Davidson and McKinnon (1998). Con-

structing size-power plots does not require knowledge of the asymptotic distribution of the

test statistic. For other recent applications of the size-power plots see Siani and de Peretti

(2006) and Gelper and Croux (2007). The size-power curves are simulated in the following

way:

i. First m = 3000 data sets under the null hypothesis are generated. For each of them the

test statistics are computed and the obtained values are sorted in increasing order. The

ith value of this ordered sequence is denoted by θi. If the critical value is chosen as θi then

the quantity si = ((m− i))/((m+ 1)) equals the size of the test.

ii. After that m = 3000 data sets are generated under the fixed alternative hypothesis

and for each of them the test statistics are computed. For a certain critical value θi the

power of the test fiis estimated by the fraction of test statistics that exceed θi.

iii. The pairs (si, fi), i = 1, . . . ,m representing the power vs. the size of the test are

plotted as size-power curves.

The size-power curve should lie above the 45◦ line, the larger the distance between the

curve and the 45◦ line the better. The most interesting part of the size-power curve is the

region where the size ranges from zero to 0.2 since in practice a significance level above

20% is never used. In Figure 3 the size-power curves for several values of the dimension

p and the sample sizes ni in case of two groups are shown. The results for three groups
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Figure 3: Size-power curves for the Wilk’s Lambda statistic ΛWilks(green line) and the

robust Wilk’s Lambda statistic ΛR (blue line) for two groups and several values for p and

n =
∑
nk. The 45◦ line is represented by red line.

are similar. It is clearly seen that in all of the investigated combinations of dimensions p

and sample sizes both curves are far above the 45◦ line with the line of the robust statistic

being slightly below or almost equal to the classical one. Thus the loss of power for the

robust statistic is acceptable throughout the investigated range of dimensions and sample

sizes.

4.3 Robustness comparisons

Now we will investigate the robustness of the one-way MANOVA hypothesis test based

on the proposed robust version of the Wilk’s Lambda statistic ΛR. For this purpose we will

generate data sets under the null hypothesis H0 : µ1 = µ2 = · · · = µg and will contaminate

them by adding outliers. More precisely the data will be generated from the following

contamination model

πj ∼ (1− ε)Np(0, Ip) + εNp(µ̂j , 0.252Ip)
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Table 3: Oslo-transect data: Names of the lithology groups.The last column shows the

number of objects in each class.

Lithological group #

1 CAMSED Cambro-Silurian sedimentary rocks 98

2 GNEISS O Precambrian gneisses - Oslo 89

3 GNEISS R Precambrian gneisses - Randsfjord 32

4 MAGM Magmatic rocks of the Oslo Rift 113

µ̂j = (υQp, ..., υQp)
twhereQp =

√
χ2
p,.001

p
,

where ε = 0.1 andv = 5. By adding to υQp each component of the outliers we guarantee

a comparable shift for different dimensions p (see Rocke and Woodruff, 1996). The same

combinations of dimensions p, numbers of groups g and sample sizes ni, i = 1, . . . , g, as in

the experiments for studying the significance levels will be used.

Again we generate ni =
∑g

i=1 ni p-variate vectors and calculate the classical statistic

ΛWilks and the robust version based on kurtosis estimates ΛR. This is repeated m = 3000

and the percentages of values of the test statistics above the appropriate critical value of the

corresponding approximate distribution are taken as an estimate of the true significance

level. We represent the results for two groups graphically in Figure 4. Similar results are

obtained for three groups also.

The difference between the actual cutoff based on ΛRand the nominal value remains

acceptably small for the different combinations of dimension p and sample size nj , j =

1, . . . , g. Furthermore this difference is much smaller compared to the classical Wilk’s

Lambda statistic ΛWilks.

4.4 Real Life Example

We will now illustrate the application of the proposed robust statistic with the Oslo-

transect data (see Reimann et al., 2007, and the references therein). Samples of different

plant species were collected along a 120 km transect running through the city of Oslo, Nor-

way, and the concentrations of 25 chemical elements for the sample materials are reported.

The factors that influenced the observed element concentrations in the sample materials

were investigated. For our example we will consider only the lithology as a factor. This

factor has four levels which are listed in Table 3. The last column shows the number of

objects in each group.

We select the variables P, K, Zn and Cu that represent elements from the group of

the nutrients and expect that the lithology strongly influences the take in of the plants
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Figure 4: Robust Comparison.
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when compared to the effect of the plant species themselves, i.e. we expect that the

multivariate group means are significantly different. After removing the observations with

missing values we remain with a data matrix of n = 332 rows and p = 4 columns. Since

geo-chemical data are usually right skewed we log-transform the variables. Todorov and

Filzmoser (2007) verified the non-normality and presence of outlier in the data.

Let us denote the means of the four groups by µ1, µ2, µ3andµ4and perform a one-way

MANOVA, testing the hypothesis H0 : µ1 = µ2 = µ3 = µ4. The classical Wilk’s Lambda

statistic for this data set yieldsΛWilks = 0.9603 which corresponds to a p-value of 0.3510.

This suggests that the hypothesis of equal means cannot be rejected at the 10% level of

significance. On the other hand the robust Wilk’s Lambda statistic yields ΛR = 0.8961

which corresponds to a p-value of 0.001495 and we can reject the null hypothesis even at

the 1% level of significance.

5. Conclusion

Multivariate analysis of variance (MANOVA) is an extension of analysis of variance

(ANOVA) to accommodate more than one dependent variable. The Wilks’ Lambda Statis-

tic (likelihood ratio test, LRT) is a commonly used tool for inference about the mean vectors

of several multivariate normal populations. As classical estimates of population mean and

dispersion are highly sensitive to outliers, classical Wilk’s Lambda and classical one-way

MANOVA are highly affected by outliers. Consequently classical MANOVA gives mis-

leading results when the data contains contaminated observations. This leads to think on

the robust version of MANOVA, which looks for a robust Wilk’s Lambda based on highly

robust and efficient estimates of population mean and dispersion matrices. There are a

number of robust estimates discussed in literature and in this study we make use of a

highly robust and efficient estimates introduced by Pena and Prieto (2001) to compute a

robust Wilk’s Lambda. The approximate distribution of the proposed robust statistic was

derived using simulations and its fitting is examined using QQ – plots.

Further, Monte Carlo simulations were used to investigate the efficiencies of the pro-

posed method and the level of significance and power of the proposed robust MANOVA

are compared with that of classical MANOVA. The results of simulation study says that

the estimated significance level in uncontaminated data using this robust method is ap-

proximately equal to the actual size, especially in high dimensional data sets. The size

-power curve proposed by Davidson and McKinnon used here to compare the power of the

proposed robust method with the classical one. Curve shows that the calculated power of

the robust method is slightly below those obtained in classical. In most cases it is equal to

the classical one. That means there is only an acceptable level of power loss is occurred for

the proposed method in uncontaminated data sets, which shows the advantage of the ro-

bust test over classical test. In contaminated situation the robust method is more suitable
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than the classical one.

Additionally, the proposed robust test is applied and investigated its performance in

a real life benchmark data (Oslo-transect data). The result shows that the proposed Ro-

bust MANOVA is much less affected by the presence of outliers compared to the classical

MANOVA. That is, the proposed robust MANOVA technique performs well under con-

taminated as well as un-contaminated situations and is a better alternative to classical

test for the data containing contaminated observations. Thus we can apply this proposed

Robust MANOVA in real life data sets, as they should necessarily have outliers.
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Abstract

The object of this paper is to introduce a new generalized probability distribution

associated with Mittag-Leffler function,which directly connect to the theory of fractional

calculus. It gives an extension to the gamma type distribution. Various properties of this

new distribution are investigated. Availability of probability models with thicker or thin-

ner tails through this new density is also illustrated in this paper. Connection to fractional

calculus is also established here.

Key words: Bayesian analysis, Gamma density, Mittag-Leffler function.

1. Introduction

In reaction rate theory, input-output type situations and reaction-diffusion problems in

physics and chemistry, when the total derivatives are replaced by fractional derivatives the

solutions automatically go in terms of Mittag-Leffler functions and their generalizations,

see Haubold and Mathai (2000). The ordinary and generalized Mittag-Leffler functions

interpolate between a purely exponential law and power-law like behavior of phenomena

governed by ordinary kinetic equations and their fractional counterparts, see Kilbas et al.

(2004), Kiryakova (2000), Mathai (2010) and Mathai et al. (2010). Among the various

results presented by various researchers, the important ones deal with Laplace transform

and asymptotic expansions of this function.

By the application of Laplace integral, it follows that
∫ ∞

0
e−axxβ−1Eα,β(−δxα)dx =

aα−β

aα + δ
, (1)
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where <(α) > 0, <(β) > 0. It is shown to be very relevant in fractional reaction-

diffusion problems in physics, since it naturally occurs in the derivation of the inverse

Laplace transform of the functions of the type aα(d + baβ), where a is the Laplace trans-

form parameter and d and b are constants. A class of Laplace transforms is examined

in Mathai et al. (2006), to show that particular cases of this class are associated with

production-destruction and reaction-diffusion problems in physics, study of differences of

independently distributed random variables and the concept of Laplacianness in statistics,

α-Laplace and Mittag-Leffler stochastic processes, the concepts of infinite divisibility and

geometric infinite divisibility problems in probability theory and certain fractional integrals

and fractional derivatives. A number of applications are pointed out with special reference

to solutions of fractional reaction and reaction-diffusion equations and their generalizations.

Motivated from the integral in (1), we think of a statistical model out of this and it

is observed that the new model will provide more flexible than the generalized gamma

density. Recently, probability models with thicker or thinner tails have got more impor-

tance among the statisticians and physicists because of their vast applications in random

walks, Lévi flights, financial modeling etc. In many modeling problems like solar model-

ing, growth-decay modeling, it is often found that the selected model is not a good fit for

the experimental data because it requires a model with thicker or thinner tail than the

ones available from the parametric family of distributions. In this paper we considered a

new family of generalized probability distributions associated with Mittag-Leffler function

(a thicker or thinner tailed model associated with gamma density) which can also be ob-

tained as a limiting case of pathway fractional integral operator (for more details about

pathway fractional integral operator one can look at the papers of Seema Nair [(2009),

(2011)]). This family gives an extension to the generalized gamma family and opens up

vast area of potential applications and establish connections to the current popular topics

of nonextensive statistical mechanics, Tsallis statistics, superstatistics and Mittag-Leffler

stochastic process, Lévi process and time series. In addition to this, the new model will

then connect to fractional calculus and statistical distribution theory through the theory

of special functions.

The generalized gamma Mittag-Leffler distribution is specified by the probability den-

sity of the form

f(x) =

{
Cxβ−1e−axEα,β(−δxα), <(β) > 0, <(α) > 0, a > 0, x > 0

0, elsewhere
(2)

where C is the normalizing constant and can be evaluated from the integral in (1) such

that C−1 = aα−β
aα+δ . For fixed values of a, β and for various values of δ, we can look at the

graphs which give a suitable interpretation to the model in (2).
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Figure 1: (a) For a = 1.5, β = 2 and δ > 0 (b) For a = 1.5, β = 2 and δ < 0

The following figures show a comparison between gamma density and gamma Mittag-

Leffler density for different values of δ. Observe that δ = 0 corresponds to the gamma

density. In Figure 1 (a), δ = 0 corresponds to the gamma density. When the values of

δ increases from δ = 0, the right tail of the new density becomes thinner and thinner

compared to that of a gamma density. Similarly peakedness of the curve slowly increases.

In Figure 1 (b), as the value of δ decreases the right tail of the new density becomes

thicker and thicker compared to that of a gamma density. Similarly the peakedness of

the curve slowly decreases. Hence when we look for a model with thicker or thinner tail

while a gamma density is found to be more or less proper fit then a member from the new

family of densities introduced here will become quite useful and handy to model which

deviate from a gamma type model. Observe that the new density is mathematically and

computationally tractable easily just like a gamma density.It may be observed that the

distribution function is available in terms of series of incomplete gamma functions, given

as

F (x) = C
∞∑

k=0

Mk γ(αk + β, x), α > 0, β > 0, (3)

where γ(αk+β, x) is the incomplete gamma function and Mk = (−δ)k
Γ(αk+β) . Similarly survival

function can be evaluated by F̄ (x) = 1− F (x), where F (x) is given in (3).

The moment generating function of (2) is given by

Mx(t) =
bβ

(b− t)β
(1− δ

bα )

(1− δ
(b−t)α )

, | δ

(b− t)α | < 1, (b− t) > 0. (4)
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The characteristic function can be obtained if we replace t by it, i =
√
−1. If we put

−t instead of t then we will obtain the Laplace transform. Using the Laplace transform

or (moment generating function) we can easily obtain the integer moments by using the

following formula:

µ′r = E(xr) = (−1)r
dr

dtr
Lf (t)|t=0.

Thus the mean value will be obtained as

µ′1 =
β

b
+

δ α

b(bα + δ)
. (5)

and

µ′2 =
1

b2

{
2α2(

δ

bα + δ
)2 + (α2 + α(2β + 1))(

δ

bα + δ
) + β(β + 1)

}
. (6)

Variance

µ2 =
β

b2
+
δα[(α+ 1)bα − δ]

b2(bα + δ)2
.

Arbitrary moments of the distribution can be obtained in terms of generalized Wright

hyper-geometric function. That is

µ′γ = E(xγ) =

∫ ∞

0
xγ f(x)dx

which is nothing but the Mellin transform of the function f with γ = s− 1.

µ′γ =
(1− δ

bα )

bγ
2Ψ1

[
(1,1),(β+γ,α)
(β,α) | δ

bα

]
(7)

where pΨq(z) is the generalized Wright’s hypergeometric function defined for z ∈ C, com-

plex ai, bj ∈ C and αi, βj ∈ <+ = (0,∞), αi, βj 6= 0; i = 1, 2, . . . , p; j = 1, 2, . . . , q by the

series

pΨq(z) ≡ pΨq

[(ai,αi)1,p
(bj ,βj)1,q

|z
]

=
∞∑

k=0

{∏p
i=1 Γ(ai + αik)} zk

{∏q
j=1 Γ(bj + βjk)}k!

. (8)

The function in (8) was introduced by Wright and is called the generalized Wright’s hyper-

geometric function. For convergence conditions, existence of various contours and other

properties see Wright [??] or from the theory of H-function to be discussed later. If we

take γ as integers in (7) then we will obtain integer moments.

2. Estimation of parameter

In this section we have given explicit forms of the estimators of the parameters using

method of moments. The method of moments is the process of equating sample and pop-

ulation moments and trying to solve for the unknown parameters. The motivation comes
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from the fact that the sample moments are consistent estimators for the corresponding

population moments. To start with, let us consider the case for b = 1, β = 1 in (2), then

the model will become the Mittag-Leffler extension of standard exponential distribution,

and has the density of the form

g1(x) = (1 + δ)e−xEα(−δxα). (9)

The moments can be obtained from (5) and (6) with the parameter value a = 1, β = 1.

The moment estimators of δ and α are given by

α̂ =

∑
(xi − x̄)2 − nx̄2

n(x̄− 1)
+ 1

and

δ̂ =
n(x̄− 1)2

∑
(xi − x̄)2 − nx̄ .

Now, consider the Mittag-Leffler extension of standard gamma density. For that we take

b = 1 in (2), thus the model has the following form

g2(x) = (1− δ)xβ−1e−xEα,β(δxα). (10)

Using the same procedure as above one can obtain the estimators as

β̂ =

∑
(xi − x̄)3 − [

∑
(xi − x̄)2][

∑
x2
i + nx̄] + 2nx̄[nx̄3 − x̄2]∑

x2
i [4nx̄− 3n− 3] + nx̄2[8nx̄+ 13n] + n2x̄

α̂ =

∑
(xi − x̄)2 − n(x̄− β̂)2 − nx̄

n(x̄− β̂)

and

δ̂ =
(x̄− β̂)

α̂+ x̄− β̂
.

If we retain all parameters α, β, δ and a, then the analytical solution is quite difficult but

the numerical solution can be obtained by using the softwares like MATLAB and Maple.

3. A Bayesian Approach to Generalized Superstatistics in

Statistical Mechanics

Suppose x ∼ generalized gamma having density function

f(x|θ) =
θγ

Γ(γ)
e−θx

ρ
xγ−1, θ > 0, γ > 0. (11)
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Assume a prior distribution for the parameter θ of the type in (2). That means θ ∼
gammaML(α, β, δ). Now the unconditional density g(x) can be obtained from the follow-

ing computations.

g(x) =

∫

θ
f(x|θ, γ)h(θ)dθ

=
aβ(1 + δ

aα )

Γ(γ)
xγ−1

∫ ∞

θ=0
θβ+γ−1e−θ(x

ρ+a)Eα,β(−δθα)dθ

=
aβ(1 + δ

aα )

Γ(γ)
xγ−1(a+ xρ)−(γ+β)

2ψ1

[
(1,1),(α,β+γ)
(α,β)

∣∣∣∣−
δ

(a+ xρ)α

]
(12)

which is the generalized superstatistics associated with Wright function. In particular for

α = 1 we can obtain the unconditional density as

g(x) =
(1 + δ

a)

aγB(γ, β)
xγ−1(1 +

xρ

a
)−(γ+β)

2F1(γ + β, β,− δ

a+ xρ
), | δ

a+ xρ
| < 1, (13)

the generalized superstatistics associated with Gauss hypergeometric function. For δ = 0,

It will become the superstatistics of Beck and Cohen (2003). In a physical system the

parameter θ in (11) may represent the temperature so that the density f(x|θ) may represent

the production of the item x at a fixed temperature θ. Then the marginal density of θ in

(2) may represent the temperature distribution. Then the unconditional density of x is

the distribution of the production of x over all temperature variations or averaged over the

density of θ. Since a density in (2) is superimposed over the density in (11), the resulting

density in (2) is called generalized superstatistics.

Figure 3: For a = 5.5, β = 2, Figure 4: For a = 5.5, β = 2,

γ = 2.5 and δ > 0 γ = 2.5 and δ < 0

The Bayes’ density/posterior density of θ can be obtained from the following formula

g1(θ|x) =
f(x|θ)h(a)∫
h(a)f(x|θ)da. (14)

g1(θ|x) = K θβ+γ−1e−(a+xρ)θEα,β(−δθα), (15)
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where K−1 = (a+xρ)−(β+γ)
2ψ1

[
(1,1),(α,β+γ)
(α,β)

∣∣∣∣− δ
(a+xρ)α

]
and we can see that the posterior

density can be obtained in the same format of the prior density.

4. Generalized Gamma Mittag-Leffler Model as a Limiting

Case of Pathway Fractional Integral Operator

Recently, Seema Nair (2009) introduced new fractional integral operator called path-

way fractional integral operator by means of pathway model of Mathai (2005). For the

pathway parameter q < 1, the definition of pathway operator is as follows:

Let f(x) ∈ L(a, b), η ∈ C, <(η) > 0, a > 0, x > 0 and let us take the “pathway

parameter” q < 1. Then the pathway fractional integration operator (pathway operator)

is defined as

(P
(η,q)
0+

f)(x) = xη
∫ [ x

a(1−q) ]

0
[1− a(1− q)t

x
]

η
(1−q) f(t)dt, (16)

where f(t) is an arbitrary function. If we restricted f(t) as any real-valued positive inte-

grable scalar function of t, one can bring out a statistical model from the pathway fractional

integral operator, see Seema Nair [(2011), (2009)]. Also for any positive integrable func-

tion f(t), we can make interpretation to pathway fractional operator as the density of a

sum of independently distributed positive random variables (Laplace convolution of two

independently distributed positive random variables). To facilitate a connection to gamma

Mittag-leffler density via pathway operator, let us consider the integrand in (16). From

this one can obtain the gamma Mittag-Leffler density as a limiting case. That is when

q → 1−, replace f(t) by tβ−1Eα,β(−δtα), then the integrand will coincide with the model

in (2). Thus we can see that the new model connects fractional calculus and statistical

distribution theory through the theory of special functions.

5. Application in Economic Modeling

In this section we present application of generalized gamma Mittag-Leffler density in

modeling Production and Sales dataset, which is a subset of the Main Economic Indi-

cators (MEI) database which contains predominantly monthly statistics, and associated

statistical methodological information, for the 34 OECD (Organization for Economic Co-

operation and Development) member countries and for selected non-member economies:

Brazil; China; India; Indonesia; Russian Federation; and South Africa. The MEI database

contains a wide variety statistics that can be classified as Short-Term Economic Statistics.

The Production and Sales dataset contains industrial statistics on four separate sub-

jects: Production; Sales; Orders; and Work started. The data series presented within these
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subjects have been chosen as the most relevant industrial statistics in the MEI database for

which comparable data across countries is available. Most data are available monthly and

are presented as an index (where the year 2005 is the base year) or as a level depending on

which measure is seen as the most appropriate and/or useful in the economic analysis con-

text. Due to differences in statistical or economic environment at country level, however,

availability of data varies from one country to another.

Here we consider the monthly production of total industry for the past few years. The

data are collected from the official website of Main Economic Indicators http://

dx.doi.org/10.1787/mei-data-en. The following is the graph of the data embedded with

the generalized gamma Mittag-Leffler density and gamma density. With the help of the

softwares MATLAB and Maple we have completed the analysis. We are not specifying

any parameters here to plot the density function and the same program produced the

two different graphs as shown below. We have calculated Kolmogorov-Smirnov statistic

for both the models and it is observed that the maximum distance measure for our new

model is less than the same for the generalized gamma model. That is, the calculated

distances for generalized gamma Mittag-Leffler and generalized gamma are 0.05818 and

0.08921 respectively and the corresponding tabled value is 0.08521. With this arguments

we can conclude that the new model in (2) gives a better fit to the data set considered.

The histogram embedded with GGML and GG models
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Abstract

A Three parameter Quasi Lindley distribution (TQLD), of which the Lindley distribu-

tion (LD) is a particular case, has been introduced. Its moments, failure rate function, mean

residual life function and stochastic orderings have been discussed. It is found that the

expressions for failure rate function, mean residual life function, and stochastic orderings

of the TQLD shows its flexibility over Lindley distribution and Exponential distribution.

The maximum likelihood method has been discussed for estimating its parameters. The

distribution has been fitted to data-set represents the survival times (in days) of 72 guinea

pigs infected with virulent tubercle bacilli to test its goodness of fit to which earlier the

Three parameter Lindley distribution has been fitted by others and it is found that to al-

most the TQLD provides closer fits than those by the Three Parameter Lindley distribution.

Key words: Quasi Lindley distribution, moments, failure rate function, mean residual life function,

stochastic ordering, estimation of parameters, goodness of fit.

1. Introduction

Lindley [8] introduced a One-parameter distribution, known as Lindley distribution,

given by its probability density function(p.d.f)

f(x; θ) =
θ2

1 + θ
(1 + x)e−θx ;x > 0, θ > 0 (1)

It can be seen that this distribution is a mixture of Exponential (θ) and Gamma (2, θ)

distributions. Its cumulative distribution functions has been obtained as,

F (x) = 1− θ + 1 + θx

θ + 1
e−θx ;x > 0, θ > 0 (2)
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Ghitany et al[6] have discussed various properties of this distribution and showed that

in many ways (1) provides a better model for some applications than the Exponential

distribution. Ghitany et al[6] studied the various properties of this distribution. A discrete

version of this distribution has been suggested by Deniz and Ojeda[7] having its applications

in count data related to insurance. Sankaran[10] obtained the Lindley mixture of Poisson

distribution. Mazucheli and Achar[9], Ghitany et al[4], Ghitany et al[5] and bakouchi et

al[1] are some among others who discussed its various applications. Shanker and Mishra[12]

introduced a Quasi Lindley distribution (QLD) with parameters α and θ defined by its

probability density function (p.d.f)

f(x;α, θ) =
θ(α+ xθ)

α+ 1
e−θx ;x > 0, θ > 0, α > −1 (3)

It can easily be seen that at α = θ, the QLD (3) reduces to the Lindley distribution (1).

Shanker and Mishra[12] have discussed its various properties and showed that this QLD is

a better model than the Lindley distribution for modeling waiting and survival times data.

A new two parameter Quasi Lindley distribution of Shanker and Amanuel Habte

Ghebretsadik[11] with parameters θ and α is defined by its probability density function

(p.d.f)

f(x; θ, α) =
θ2

θ2 + α
(θ + αx)e−θx ;x > 0, θ > 0, α < −θ2 (4)

The cumulative distribution function (c.d.f.) of the New QLD is obtained as

F (x) = 1− θ2 + α+ θαx

θ2 + α
e−θx;x > 0, θ > 0, α < −θ2 (5)

The first four moments about origin of the New QLD obtained are

µ′1 =
θ2 + 2α

θ(θ2 + α)
, µ′2 =

2(θ2 + 3α)

θ2(θ2 + α)
, µ′3 =

6(θ2 + 4α)

θ3(θ2 + α)
, µ′4 =

24(θ2 + 5α)

θ4(θ2 + α)
(6)

It can easily be verified that for α = θ, the moments about origin of the new QLD

reduce to the respective moments of the Lindley distribution.

The central moments of the New QLD have thus been obtained as

µ2 =
θ4 + 4θ2α+ 2α2

θ2(θ2 + α)2
, µ3 =

2(θ6 + 6θ4α+ 6θ2α2 + 2α3)

θ3(θ2 + α)3

,

µ4 =
3(3θ8 + 24θ6α+ 44θ4α2 + 32θ2α3 + 8α4)

θ4(θ2 + α)4
(7)

Shanker[13] has detailed study about Three Parameter Generalised Lindley distribu-

tionb (TPGLD) and obtained expressions for coefficient of variation, skewness, kurtosis,
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index of dispersion, hazard rate function and the mean residual life function.

Shanker[13] has detailed comparative study of TPGLD and Three-Parameter Generalized

Gamma distribution (TPGGD) and observed that in most of the data sets from medical

science and engineering TPGGD gives better fit than TPGLD.

The p.d.f and c.d.f of a Three Parameter Lindley distribution introduced by Rama

Shanker, Kamlesh Kumar Shukla, Ravi Shanker and Tekie Asehun Leonida[14] are given

by

f(x; θ, α, β) =
θ2

θα+ β
(α+ βx)e−θx ;x > 0, θ > 0, β > 0, θα+ β > 0 (8)

F (x; θ, α, β) = 10[1 +
θβx

θα+ β
]e−θx ;x > 0, θ > 0, β > 0, θα+ β > 0 (9)

There are many situations where these distributions are not suitable for modeling

lifetime data from theoretical or applied point of view. Therefore, an attempt has been

made here to obtain a new distribution which is flexible than these lifetime distributions

for modelling lifetime data in reliability and in terms of hazard rate shapes.

2. Three Parameter Quasi Lindley Distribution

Three Parameter Quasi Lindley distribution (TQLD) with parameters θ, α and β is

defined by its probability density function (p.d.f)

f(x; θ, α, β) =
θ(α+ βθx)e−θx

α+ β
;x > 0, θ > 0, α > 0, α+ β > 0 (10)

here we can conclude that α and β are scale parameters and θ is shape parameter.

it can easily be seen that

• at β = 1 the Three Parameter Quasi Lindley distribution reduces to the Quasi

Lindley distribution.

• at β = 1 and α = θ, it reduces to the Lindley distribution (1).

• at β = 1 and α = 0 it reduces to Beta(2,θ).

The p.d.f (10) can be shown as a mixture of Gamma (2,θ) and Exponential (θ) distri-

butions.
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Figure 1: Density curves of TQLD with α = 1 and β = 1

The cumulative distribution function (c.d.f) of the TQLD is obtained as

F (x) =

∫ x

0

θ (βθt+ α) e−θt

β + α
dt

= 1− (βθx+ α+ β)e−θx

α+ β
;x > 0, θ > 0, α > 0, α+ β > 0 (11)

The first derivative of (10) is

f ′(x) =
θ2

α+ β
(β(1− xθ)− α)e−θx

and f ′(x) = 0 gives x =
β − α
βθ

. From this it follows that

for β > α, x0 =
β − α
βθ

is the unique critical point at which f(x) is maximum. if β ≤ α,

f ′(x) ≤ 0, i.e f(x) is decreasing in x.

Therefore, the mode of the Three Parameter Quasi Lindley distribution (TQLD) is given

by

Mode =





β − α
βθ

, β > α

0 , otherwise
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Figure 2: Density curves of TQLD with θ = 1 and β = 1.

2.1 Moments and some related measures

The rth moment about origin of the Three Parameter Quasi Lindley distribution

(TQLD) (10) has been obtained as

µ′r =
αΓ(r + 1) + βΓ(r + 2)

θr(α+ β)
; r = 1, 2, 3, ... (12)

It can easily be verified that for β = 1 and α = θ, the moments about origin of the Three

Parameter Quasi Lindley distribution reduces to the respective moments of the Lindley

distribution.

The central moments of TQLD have been obtained as

µ2 =
α2 + 2β(2α+ β)

θ2(α+ β)2
(13)

µ3 =
18β3 + 37αβ2 + 30βα2 + 2(α+ 2β)3

θ3(α+ β)3
(14)

µ4 =
24(α+ 30β)− 3(α+ 2β)[8α+ 32β − 4α2 − 20αβ − 24β2 + α3 + 8β3 + 6α2β + 12αβ2]

θ4(α+ β)4

(15)
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Figure 3: Density curves of TQLD with θ = 1 and α = 1.

The coefficient of variation(γ), skewness (
√
β1) and the kurtosis (β2) of the Three

Parameter Quasi Lindley distribution have been obtained as

γ =

√
α2 + 2β(2α+ β)

α+ 2β
(16)

√
β1 =

18β3 + 37αβ2 + 30βα2 + 2(α+ 2β)3

(α2 + 2β(2α+ β))3/2
(17)

β2 =
θ3(α+ 2β)(α+ β)

(α2 + 2β(2α+ β))2
(18)

Although, the expressions for coefficient of variation (γ), skewness (
√
β1), and kurto-

sis (β2) of the QLD of Shanker and Mishra[12] depend upon the parameter α only, the

expressions for coefficient of variation(γ), skewness (
√
β1), and kurtosis(β2) of the TQLD

depend upon all parameters θ, α and β . It can also be seen that the TQLD is positively

skewed.

2.2 Hazard rate Function and Mean Residual Life Function

For a continous distribution with p.d.f. f(x) and c.d.f. F(x), The hazard rate function

(also known as the failure rate function) and the mean residual life function of X are



Ashlin Mathew P.M. and Sneha Robinson 223

respectively defined as,

h(x) = lim
∆X→0

P (X < x+ ∆x|X > x)

∆x
(19)

m(x) =
1

1− F (x)

∫ ∞

x
[1− F (t)]dt (20)

The corresponding hazard rate function, h(x) and the mean residual life function, m(x) of

TQLD are obtained as

h(x) =
θ(α+ βθx)

βθx+ α+ β
(21)

m(x) =
βθx+ α+ 2β

θ(βθx+ α+ β)
(22)

It can be easily verified that h(0) =
θα

α+ β
= f(0) and m(0) =

2β + α

θ(α+ β)
= µ′1. It is also

obvious that h(x) is an increasing function of x, α, β and θ whereas m(x) is a decreasing

function of x,α, β and θ. The graph of the hazard rate function is shown in figure 4. The

failure rate function and the mean residual life function of the TQLD show its flexibility

over Lindley distribution, Exponential distribution, the QLD of Shanker and Mishra[12]

and A New Two Parameter Quasi Lindley distribution of Rama Shanker and Amanuel

Habte Ghebretsadik[11].

2.3 Mean Deviations

The amount of scatter in a population is measured to some extent by the totality of

deviations usually from mean and median. These are known as the mean deviation about

the mean and the mean deviation about the median defined by

δ1(X) =

∫ ∞

0
|x− µ|f(x)dx

and

δ2(X) =

∫ ∞

0
|x−M |f(x)dx

respectively, where µ = E(x).The measure δ1(X) and δ2(X) can be calculated using the

relationships

δ1(X) =

∫ µ

0
(µ− x)f(x)dx+

∫ ∞

µ
(x− µ)f(x)dx

= µF (µ)−
∫ µ

0
xf(x)dx− µ[1− F (µ)] +

∫ ∞

µ
xf(x)dx

= 2µF (µ)− 2µ+ 2

∫ ∞

µ
xf(x)dx

= 2µF (µ)− 2

∫ µ

0
xf(x)dx (23)
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Figure 4: Hazard rate plot.

δ2(X) =

∫ M

0
(M − x)f(x)dx+

∫ ∞

M
(x−M)f(x)dx

= MF (M)−
∫ M

0
xf(x)dx−M [1− F (M)] +

∫ ∞

M
xf(x)dx

= −µ+ 2

∫ ∞

M
xf(x)dx

= µ− 2

∫ M

0
xf(x)dx (24)

Using p.d.f.(10) and expression for the mean of TQLD, we get

∫ µ

0
xf(x)dx = µ−

(
βµ2θ2 + (2β + α)µθ + 2β + α

)
e−µθ

(β + α) θ
(25)

∫ M

0
xf(x)dx = µ−

(
βM2θ2 + (2β + α)Mθ + 2β + α

)
e−Mθ

(β + α) θ
(26)

Then δ1(x) δ2(x) and can be written as

δ1(x) =
(−βθ2µ2 − αµθ + 2β + α)e−θµ

θ(α+ β)
(27)
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δ2(x) =
2
(
βM2θ2 + (2β + α)Mθ + 2β + α

)
e−Mθ

(β + α) θ
− µ (28)

2.4 Bonferroni And Lorenz Curves

The Bonferroni and Lorenz curves ([3]) have applications not only in economics to

study income and poverty, but also in other fields like reliability, demography, insurance

and medicine. The Bonferroni and Lorenz curves are defined as,

B(p) =
1

pµ

∫ q

0
xf(x)dx

=
1

pµ
[

∫ ∞

0
xf(x)dx−

∫ ∞

q
xf(x)dx]

=
1

pµ
[µ−

∫ ∞

q
xf(x)dx] (29)

and

L(p) =
1

µ

∫ q

0
xf(x)dx

=
1

µ
[

∫ ∞

0
xf(x)dx−

∫ ∞

q
xf(x)dx]

=
1

µ
[µ−

∫ ∞

q
xf(x)dx] (30)

respectively or equivalently

B(p) =
1

pµ

∫ p

0
F−1(x)dx (31)

and

L(p) =
1

µ

∫ p

0
F−1(x)dx (32)

respectively, where µ = E(x) and q = F−1(p)

Using p.d.f. (10), we get

∫ ∞

q
xf(x)dx =

(
βq2θ2 + (2β + α) qθ + 2β + α

)
e−qθ

(β + α) θ
(33)

Now using equation (33) in (29) and (30), we get

B(p) =
1

p
[1−

(
βq2θ2 + (2β + α) qθ + 2β + α

)
e−qθ

α+ 2β
] (34)

and

L(p) = 1−
(
βq2θ2 + (2β + α) qθ + 2β + α

)
e−qθ

α+ 2β
(35)
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2.5. Stochastic Ordering

Stochastic ordering of positive continous random variables is an important tool for

judging their comparative behaviour. A random variable X is said to be smaller than a

random variable Y in the

1. Stochastic order (X ≤st Y ) if

FX(x) ≥ FY (x) ∀x

2. Hazard rate order (X ≤hr Y ) if

hX(x) ≥ hY (x) ∀x

3. Mean residual life order (X ≤mlr Y ) if

mX(x) ≤ mY (x) ∀x

4. Likelihood ratio order X ≤lr Y if
fX(x)

fY (x)
decreases in x

the following results due to Shaked and Shanthikumar[15] are well known for establishing

stochastic ordering of distribution

X ≤lr Y =⇒ X ≤hr≤ Y =⇒ X ≤mlr≤ Y
and

X ≤hr≤ Y =⇒ X ≤st Y
The TQLD is orderd w.r.to the strongest likelihood ratio ordering as shown in the following

theorem.

Theorem 2.1: Let X∼TQLD(θ1, α1, β1) and Y∼TQLD(θ2, α2, β2). Now under con-

ditions

1. α1 = α2, β1 = β2 and θ1 > θ2

2. α1 = α2, β1 > β2 and θ1 = θ2 and

3. α1 > α2, β1 = β2 and θ1 = θ2

X ≤lr Y and hence X ≤hr Y,X ≤mlr Y and X ≤st Y
Proof: We have

fX(x)

fY (x)
=

θ1(α1 + β1θ1x)e−θ1x

α1 + β1

α2 + β2

θ2(α2 + β2θ2x)e−θ2x

now

log
fX(x)

fY (x)
= log[

θ1(α1 + β1θ1x)

θ2(α2 + β2θ2x)
] + log[

α2 + β2

α1 + β1
]− x(θ1 − θ2)
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and

d

dx
log

fX(x)

fY (x)
=

d

dx
(log[

θ1(α1 + β1θ1x)

θ2(α2 + β2θ2x)
] + log[

α2 + β2

α1 + β1
]− x(θ1 − θ2))

=
α2β1θ1 − α1β2θ2

(α1 + β1θ1x)(α2 + β2θ2x)
− (θ1 − θ2) (36)

It can be easily verified that under conditions,
d

dx
log

fX(x)

fY (x)
< 0. This means that X ≤lr Y and hence X ≤hr Y,X ≤mlr Y and X ≤st Y .

2.6. Order Statistics And Renyi Entropy Measure

Let X1, X2, ..., Xn be a random sample of size n from TQLD (10). Let X(1) < X(2) <

... < X(n) denote the corresponding order statistics. The p.d.f. and the c.d.f. of the kth

order statistic, say Y = X(k) are given by

fY (y) =
n!

(k − 1)!(n− k)!
F k−1(y){1− F (y)}n−kf(y)

=
n!

(k − 1)!(n− k)!

n−k∑

l=0

n−kCl (−1)lF k+l−1(y)f(y) and

FY (y) =

n∑

j=k

nCjF
j(y){1− F (y)}n−j

=
n∑

j=k

n−j∑

l=0

nCj
n−jClF

j+l(y)

respectively, for k=1,2,3,...,n.

Thus, the p.d.f. and c.d.f. of kth order statistics of TQLD are obtained as

fY (y) =
n!

(k − 1)!(n− k)!

θ(α+ βθx)

α+ β
e−θx

n−k∑

l=0

n−kCl(−1)l[1− βθx+ α+ β

α+ β
e−θx]k+l−1

and

FY (y) =
n∑

j=k

n−j∑

l=0

nCj
n−jCl [1− βθx+ α+ β

α+ β
e−θx]j+l

An entropy of a random variable X is a measure of variatio of uncertainty. A popular

entropy measure is Renyi entropy (1961). If X is a continuous random variable having

probability density function f(.), then Renyi entropy is defined as

TR(γ) =
1

1− γ log{
∫
fγ(x)dx}
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where γ > 0 and γ 6= 1

TR(γ) =
1

1− γ log[

∫ ∞

0

θγ

(α+ β)γ
(α+ βθx)γe−θγxdx]

=
1

1− γ log[

∫ ∞

0

θγαγ

(α+ β)γ

∞∑

j=0

rCj(
βθ

α
x)je−θγxdx]

=
1

1− γ log[

∞∑

j=0

rCj
θγ−1βjαγ−j

(α+ β)γ
Γ(j + 1)

Γ(γj+1)
]

2.7. Stress-Strength Reliability

The stress- strength reliability describes the life of a component which has random

strength that is subjected to a random stress. When the stress applied to it exceeds

the strength, the component fails instantly and the component will function satisfactorily

till X>Y. Therefore, R=P(Y<X) is a measure of component reliability and in statistical

literature it is known as stress-strength parameter. It has wide applications in almost

all areas of knowledge especially in engineering such as structures, deterioration of rocket

motors, static fatigue of ceramic components, aging of concrete pressure vessels etc.

Let X and Y be independent strength and stress random variables having TQLD (10) with

parameters (θ1,α1,β1) and (θ2,α2,β2) respectively. Then the stress-strength reliability R of

TQLD can be obtained as

R = P (Y < X) =

∫ ∞

0
f(x, θ1, α1.β1)F (x; θ2, α2, β2)dx

=

∫ ∞

0

θ1 (β1θ1x+ α1) e−θ1x
(

1− (β2θ2x+β2+α2)e−θ1x

β2+α2

)

β1 + α1
dx

=
3β1 + 2α1

4 (β1 + α1)
− β2θ2

4 (β2 + α2) θ1

3. Maximum Likelihood Estimate (MLE)

Let (x1, x2, ..., xn) be a random sample of size n from TQLD (10) by

L = (
θ

α+ β
)n

n∏

i=1

(α+ βθxi)e
−nθx̄

The natural log likelihood function is thus obtained as

lnL = nln(
θ

α+ β
) +

n∑

i=1

ln(α+ βθxi)− nθx̄
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The maximum likelihood estimators (MLE) θ̂, α̂ and β̂ of θ, α and β are the solutions of

the following non-linear equations

∂L

∂θ
=
n

θ
+

n∑

i=1

βxi
α+ βθxi

− nx̄ = 0 (37)

∂L

∂α
=
−n
α+ β

+
n∑

i=1

1

α+ βθxi
= 0 (38)

∂L

∂β
=
−n
α+ β

+
n∑

i=1

θxi
α+ βθxi

= 0 (39)

where x̄ is the sample mean.

These three natural log likelihood equations do not seem to be solved directly. However,

the Fisher’s scoring method can be applied to solve these equations. We have

∂2lnL

∂θ2
=
−n
θ2
−

n∑

i=1

β2x2
i

(α+ βθxi)2

∂2lnL

∂θ∂α
= −

n∑

i=1

βxi
(α+ βθxi)2

=
∂2lnL

∂α∂θ

∂2lnL

∂θ∂β
=

n∑

i=1

(α+ βθxi)xi − βxi(1 + θxi)

(α+ βθxi)2
=
∂2lnL

∂β∂θ

∂2lnL

∂α2
=

n

(α+ β)2
−

n∑

i=1

1

(α+ βθxi)2

∂2lnL

∂α∂β
=

n

(α+ β)2
−

n∑

i=1

θxi
(α+ βθxi)2

=
∂2lnL

∂β∂α

∂2lnL

∂β2
=

n

(α+ β)2
−

n∑

i=1

θ2x2
i

(α+ βθxi)2

The following equations can be solved for MLE’s θ̂, α̂ and β̂ of θ, α and β of TQLD (10)




∂2lnL

∂θ2

∂2lnL

∂θ∂α

∂2lnL

∂θ∂β

∂2lnL

∂α∂θ

∂2lnL

∂α2

∂2lnL

∂α∂β

∂2lnL

∂β∂θ

∂2lnL

∂β∂α

∂2lnL

∂β2







θ̂ − θ0

α̂− α0

β̂ − β0




=




∂L

∂θ

∂L

∂α

∂L

∂β




where θ0, α0 and β0 are the initial values of θ, α and β respectively. These equations are

solved iteratively till sufficiently close values of θ̂, α̂ and β̂ are obtained.
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4. Goodness of Fit

Three parameter Quasi Lindley distribution (TQLD) has been fitted to a number of

lifetime data to test its goodness of fit. In this section, we present the goodness of fit

of TQLD for a real lifetime data and its fit has been compared with the three-parameter

Lindley distribution (TPLD), introduced by [14]. The following lifetime data has been

considered for testing the goodness of fit of TQLD and TPLD.

Data Set: This data represents the survival times (in days) of 72 guinea pigs infected

with virulent tubercle bacilli, observed and reported by Bjerkedal[2]

10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109,

112, 113, 115, 116, 120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163

163, 168, 171 172, 176, 183, 195, 196, 197, 202 213, 215, 216, 222, 230, 231, 240, 245, 251,

253, 254, 254, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555

In order to compare TQLD and TPLD, values of -2ln L and K-S Statistics (Kolmogorov-

Smirnov Statistics) for real life time data has been computed. The formulae for computing

K-S Statistics is as follows:

K − S = Supx|Fn(x)− F0(x)| (40)

where k = the number of parameters, n = the sample size and Fn(x) is the empirical

distribution function.

The best distribution is the distribution which corresponds to lower value of -2ln L and

K-S statistics and higher p-value.

Table 1: Ml estimates of TQLD and TPLD

Distributions ML Estimate

θ̂ α̂ β̂

TQLD 0.0118342 -0.1762485 2.0793276

TPLD 0.01183 -0.1758485 2.793276

Table 2: AIC, BIC, K-S statistic and p value corresponding to TPLD and TQLD

Distributions -2 ln L AIC BIC K-S statistic P-value

TQLD 856.212 862.212 869.042 0.15179 0.07245

TPLD 858.4548 864.4548 871.2848 0.18537 0.01419

It can be easily seen from above table that TQLD gives better fit than the TPLD.
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5. Concluding Remarks

In this paper, we proposed Three parameter Quasi Lindley distribution (TQLD), of

which the one-parameter LD is a particular case. Several properties of the TQLD such as

moments, skewness and Kurtosis have been discussed. Various reliability properties such

as failure rate function, mean residual life function, stochastic orderings have been ob-

tained and discussed and shown that the TQLD is more flexible than Lindley distribution,

Exponential distribution, and New QLD. The density function of the TQLD along with

its cumulative distribution function and hazard rate function has been shown graphically

for different values of its parameters for comparative study with TPLD. The estimation

of parameters by the method of maximum likelihood have been discussed. The proposed

distribution has been fitted to a data set, to test its goodness of fit to which earlier the

Three parameter Lindley distribution has been fitted[14] and it is found that the TQLD

provides closer fits than those by the Three Parameter Lindley distribution.
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Abstract

In this article, we estimate the Time To Test Transform for the Lomax function based

on Quasi likelihood. Both the classical and Bayes estimators have been developed. The

empirical evaluation of the estimates are done using a simulation study.

Key words: Time To Test Transform, Lomax distribution, Quasi- Bayesian estimation, Loss

functions.

1. Introduction

The concept of time to test (TTT) transforms is well known for its applications in

different fields of study such as reliability analysis (Lai and Xie (2006, p. 42)), econometrics

(Pham and Turkkan (1994)), stochastic modelling (Vera and Lynch (2005)), tail orderings

(Bartoszewicz (1995)), and ordering distributions (Kochar et al. (2002)). A major share of

the literature on TTT is concerned with reliability problems that include characterization

of ageing properties, model identification, tests of hypotheses, age replacement policies in

maintenance life distributions, and defining new class q qes of life distributions. We refer

the reader to Bergman ad Klefsjo (1984), Bartoszewicz (1995), Haupt and Schabe (1997),

Kochar (2002), Li and Zou (2004), Ahmed et al. (2005), Li and Shaked (2004), Nanda and

Shaked (2008), and the references therein for further details.

Time to test (TTT) transform plots are useful for analysing non-negative data. The

plots help in choosing a mathematical model for the data and provide information about

failure rate. Also incomplete data can be analysed and there is a theoretical basis for such
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an analysis, see Barlow and Campo (1975). As TTT is useful in analysing incomplete data,

we can order the distributions according to TTT of respective distributions.

The Lomax distribution also known as the Pareto distribution of second kind has, in

recent years, assumed opposition of importance in the field of life testing because of its uses

to fit business failure data. It has been used in the analysis of income data, and business

failure data. It may describe the life time of a decreasing failure rate component as a

heavy tailed alternative to the exponential distribution. Lomax distribution was introduced

by Lomax (1954), Abdullah and Abdullah (2010) estimated the parameters of Lomax

distribution based on generalized probability weighted moment. Zangan (1999) deals with

the properties of the Lomax distribution with three parameters. Abd-Elfatth and Mandouh

(2004) discussed inference for R = PrY < X when X and Y are two independent Lomax

random variables. Nasiri and Hosseini (2012) performs comparisons of maximum likelihood

estimation (MLE) based on records and a proper prior distribution to attain a Bayes

estimation (both informative and non-informative) based on records under quadratic loss

and squared error loss functions. Afaq et al. (2014) estimates parameters of Lomax

distribution using Jeffery’s and extension of Jeffery’s prior under different loss functions.

The pdf is given by

f(x : θ, λ) =
θλθ

(λ+ x)θ+1
x, θ, λ > 0 (1)

Where θ and λ are shape and scale parameters respectively.

For the above model, the TTT simplifies to

φ(t) = 1− (1− t) θ−1
θ (2)

In the next section we obtain Quasi likelihood estimate of the TTT for the Lomax

distribution (1) when the parameter λ is to be known both in classical and Bayesian

framework.

2. Quasi-Likelihood Estimation

The quasi-likelihood function was introduced by Wedderburn (1974), to be used for esti-

mating the unknown parameters in generalized linear models. The idea of quasi-likelihood

weakens the assumption that we know exactly the distribution of the random component

in the model, and replace it by an assumption about how the variance changes with mean.

The quasi-likelihood function could be used for estimation in the same way as the usual

likelihood function. Wedderburn (1974) and McCullagh (1983) showed that the maxi-

mum quasi-likelihood estimates have many properties similar to particular, the maximum
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Table 1: Bias of the Maximum Quasi likelihood estimates of θ

n θ Bias

25 1.5 0.00644

2.5 0.00144

3.5 0.02689

50 1.5 0.01344

2.5 0.08923

3.5 0.07326

75 1.5 0.08425

2.5 0.01044

3.5 0.07894

quasi-likelihood estimate of the vector β (the vector of parameters in regression mod-

els) is a asymptotically normal with mean β, and asymptotic covariance may be derived

in the usual fashion from the second derivative matrix of the quasi-likelihood function.

Also, if the underlying distribution comes from a natural exponential family the maximum

quasi-likelihood estimate maximizes the likelihood function and so it has full asymptotic

efficiency; under more general distributions there is some loss of efficiency, which have

been investigated by Firth (1987) and Hill and Tsai (1988). Weddwerburn defned the

quasi-likelihood function as

Q(x, µ) =

∫

µ

x− µ
V (µ)

dµ+ o(x) (3)

where µ = E(x), V (µ) = V ar(x), and o(x) is some function of x only. The variance

assumption is to V ar(x) = φV ar(µ) where the variance function V (.) is assumed to be

known and the parameter φ may be unknown. The quasi-likelihood function has properties

similar to those of the log-likelihood function.

For a sample x
−

= (x1, x2, · · · , xn) of size n from (3), the quasi-likelihood function simplifies

to

Q(x, θ, λ) = log
θ − 1

λ

n

− θ − 1

λ
v where v =

n∑

i=1

xi

The natural exponent of Q(x, θ, λ) is the likelihood function and is given as

l(x
−
|θ, λ) =

θ − 1

λ

n

.exp[−θ − 1

λ
v] (4)
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Using (4), the maximum quasilikelihood estimate of the parameter θ denoted by θ̂MQL is

simplified as

θ̂MQL = 1 +
nλ

v

The maximum quasi-likelihood estimator for the TTT, denoted by φ̂MQL(t) can be ob-

tained from (1.2) after replacing θ by φ̂MQL.

3. Quasi-Bayesian Estimation

The Bayesian approach provides the possibility for incorporating prior information

about the relevant parameters. To this end the parameter θ, is considered as a random

variable, having some specified distribution. Here we suggest the conjugate prior distribu-

tion for the parameters and is given by

g(θ, λ) =
τ r

Γr
θr−1e−θτ . (5)

Combining (4) and (5), the joint posterior density is obtained as

f(θ, λ|x
−

) ∝ τ r

Γr
θr−1

θ − 1

λ

n

.exp[−θτ − (
θ − 1

λ
)v],

f(θ|x
−

) =
θr−1 θ−1λ

n
.exp[−θτ − ( θ−1λ )v]

C1(0)
, (6)

where

C1(d) =

∞∫

0

θr+d−1
θ − 1

λ

n

.exp[−θτ − (
θ − 1

λ
)v]dθ.

The symbol C with suffixes stands for the normalizing constants. Let φ(t) be a parameter

itself denoted by φ for simplicity. Replacing θ in (3.3) in terms of φ by that (1.2), we get

the posterior of the TTT as

f(θ|x
−

) =
Rr+1
φ (1− θ)−1(Rφ−1λ )

n
.exp[−Rφτ − (

Rφ−1
λ )v]

C2(t, 0)

where C2(t, d) =

1∫

0

φdRr+1
φ (1− θ)−1Rφ − 1

λ

n

.exp[−Rφτ − [
Rφ − 1

λ
]v]dφ, (7)

with

Rφ =
[
1− log[1− φ(t)]

log(1− t)
]−1

.
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From a theoretic view point, in order to select the bestestimator, a loss function must be

specified and is used to represent a penalty associated with each of the possible estimates.

• The Quasi-Bayes estimator and the posterior risk of TTT under Squared error loss

function are given by

φ̂QBS = E(φ|x) =
C2(1)

C2(0)

with risk function,

R(φ, φ̂QBS) = V ar(φ|x) =
C2(1)

C2(0)
− C2(1)

C2(0)

2

• The Quasi Bayes estimator and the posterior risk of TTT under Linex loss function

are given by

φ̂QBL =
−1

a
ln[E(e−aφ|x)] =

−1

a
lnB2,

and

R(φ, φ̂QBL) = lnB2 + a
C2(1)

C2(0)
,

where B2 =

1∫
0

φdRr+1
φ (1−θ)−1fracRφ−1λn.exp[−Rφτ−[

Rφ−1

λ
]v]dφ

C2(t,0)
and C2(t, d) is given in (7).

4. A Numerical Example

In the absence of real data we compare the estimates empirically by generating

observations from the Lomax distribution. The samples of sizes n = 25, 50, 75

were generated for different values of the parameter from Lomax distribution with

α = 1.5, 2.5, 3.5 and β = 1.5, 2.5, 3.5. For the simulation study, we choose the value

of a = 0.5, the LINEX shape parameter and set t = 0.3. The bias and the posterior

risks (in parenthesis) for each estimates using Quasi -Bayesian estimation and MQL

estimates are tabulated in the following tables.

5. Conclusion

We obtained the estimators of the parameter and TTT function of Lomax distri-

bution. The estimators are obtained using both symmetric and asymmetric loss

functions. From the above tables, we can conclude that,

1. As the sample size increases the bias and risk decreases for all values of θ.

2. Linex loss function has lesser bias than the squared error loss.



238 Proceedings of NSASSSM-2020

Table 2: Bias and risks (in parentheses) of the Quasi Bayesian estimate of TTT under

SELF and LLF

n θ Trueφ BiasMQL BiasQBS BiasQBS BiasQBL BiasQBL
25 1.5 0.112 0.00091 0.00054 (0.00452) 0.00031 (0.00046)

2.5 0.193 0.00007 0.00179 (0.00125) 0.00009 (0.00052)

3.5 0.225 0.00060 0.00044 (0.00235) 0.00431 (0.00056)

50 1.5 0.112 0.00191 0.00121 (0.00111) 0.00031 (0.00031)

2.5 0.193 0.00396 0.00012 (0.00825) 0.00006 (0.0002)

3.5 0.223 0.00169 0.00175 (0.00043) 0.00012 (0.00036)

75 1.5 0.112 0.01116 0.01108 (0.00023) 0.00012 (0.00023)

2.5 0.193 0.00048 0.00025 (0.00081) 0.00014 (0.00013)

3.5 0.223 0.00174 0.00135 (0.00134) 0.00015 (0.00012)

3. The Quasi Bayesian estimates are found to be better than the maximum Quasi

likelihood estimates.
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