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PREFACE

This book consists of 17 papers which were presented at the National Seminar in
Applied Statistics and Symposium on Stochastic Modelling held during February 4-6, 2020
at St. Thomas College (Autonomous), Thrissur, Kerala as part of centenary celebrations
of the college & 85th birth anniversary of Professor A. M. Mathai. Topics to be covered
in this book are Distribution Theory, Special functions, Multivariate Analysis, Reliability
and Survival Analysis, Classical and Bayesian Inference, Biostatistics and Time Series
and Stochastic Modelling. This conference, comprised of around 44 talks regarding various
areas of applied statistics and stochastic modelling, was attended by about 150 participants.

St. Thomas College, Thrissur is one of the leading academic institutions in the higher
education sector of Kerala since 1919. It has a long and proud tradition of excellence in
training, teaching and research in many academic disciplines of Science, Arts, Commerce
and Humanities.

Professor A. M. Mathai is an Emeritus Professor (Full Professor) of Mathematics and
Statistics, McGill University, Montreal, Canada, Director, Centre for Mathematical and
Statistical Sciences, Kerala, India and Former President of the Indian Mathematical Society
and Chairman of the Kerala State Statistical Commission. Dr A. M. Mathai was honored
by several institutions and national societies in India and thrice by the United Nations. By
2020 he has finished nearly 60 years of his teaching career and nearly 54 years of research
career. He has published over 300 research papers, most of them in SCI journals, and in
37 books he is the sole author or principal co-author. He has edited another 35 books
also, including two for the United Nations. He has over 28,000 citations by 2019 as per
Google counts, possibly the most cited mathematician/statistician in India and one of the
top cited in the world.

The Organizers of NSASSSM-2020 are very much grateful to University Grants Com-
mission (UGC), Science and Engineering Research Board, Department of Science and
Technology (DST) and Mathematical and Statistical Sciences Trust for giving financial
assistance. We gratefully acknowledge the support extended by these agencies for the
successful conduct of the conference.

All the papers submitted for publication in this book were refereed rigorously. The help
offered in this regard by numerous referees is gratefully acknowledged. We honestly hope
that the readers of this book will find the papers to be useful and of interest. We also thank
all the authors for submitting their papers for publication in this book. Special thanks
goes to our Advisory Committee, National Organizing Committee and Local Organizing
Committee for their support and involvement in organising this seminar and for helping
with the final production of this book. Special thanks to research scholars, teaching and

iii



non-teaching staff, graduate and post graduate students of Department of Statistics and B.
Voc. Data Science, for the excellent cooperation rendered in bringing out this conference.

The editors are not responsible for the correctness and originality of the results in
various papers. The responsibility lies solely with the authors of the respective papers.

Thrissur Nicy Sebastian
25t April 2020 Sajesh T A
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Lectures On Factor Analysis: A New Look

A.M. Mathai
Emeritus Professor of Mathematics and Statistics, McGill University, Canada
Email:directorcms4580gmail . com

Abstract

The topic of Factor Analysis in Multivariate Statistical Analysis is usually a difficult
topic for students to understand, to interpret and to see the significance of the various
procedures and approximations. This article is based on the lectures of the author. In
this article this area is examined through Jacobians of matrix transformations and some
properties of special functions of matrix argument. This approach makes the derivations
easy and to some extend interpretable also. All the factor loadings and error variances are
estimated explicitly and testing of hypothesis is also done under one set of identification
conditions.

AMS Subject Classification: 62H25, 62H12, 62H15.

Key words: Factor analysis, principal components analysis, linear models, estimation and test of

hypotheses.

1. Introduction

The following notations will be used in this article. Small letters z,y, z etc will denote
real scalar variables whether mathematical variables or random variables. Capital letters
X, Y etc will be used for real vector/matrix-variate variables whether square or rectangular
matrix is involved. A tilde will be used for the variables in the complex domain such as
#,7,X,Y etc. Constant vectors/matrices will be denoted by A, B, C etc. A tilde will not
be used for constant matrices unless the point is to be stressed that the constant matrix
is in the complex domain. In the real case, determinant of a square matrix A will be
denoted by |A| or det(A) and in the complex case the absolute value of the determinant of
A will be denoted as |det(A)|. When matrices are square then their order will be taken as
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p % p unless specified otherwise. When A is of full rank in the complex domain then AA* is
Hermitian positive definite where A* indicates complex conjugate transpose of A. Also, d X
will indicate the wedge product of all distinct differentials in the matrix X. If X = (zy;),
p x q and of distinct real scalar variables x;;’s then dX = AJ_; A7_, da;;. For the complex
matrix X = X1 +iXq,i = m, where X7 and X5 are real, then dX = dX; A dXs.

Factor Analysis was originally developed in connection with mental tests. A score
available in a mental test is contributed by many mental faculties or mental factors. It
is assumed that a certain linear function of these contributions from the various mental
factors is producing the final score. Hence there is a parallel to linear regression models
and analysis of variance or design of experiment models. In order to introduce the topic
of Factor Analysis we will examine a linear regression model and a design of experiment
model first.

Since the primary audience is expected to be students, the material will be written in
the form of a lecture note. Those who are already exposed to the preliminaries may delete
Sections 1 and 2 and go directly to Section 3.

1.1. Linear Models from Different Disciplines

(a) A linear regression model

Let = be a real scalar random variable and let ¢q,...,t, be either r fixed numbers or
given values of  random variables. Let the conditional expectation of x, given t1, ..., ., be
of the form

Elx|t1,...,t;] = ap + a1ty + ... + at,

or the corresponding model be
T=a,+ ait1 +...+at. +e

where a,, a1, ...,a, are unknown constants, ti,...,t, are given values and e is the error
part or the sum total of contributions coming from unknown or uncontrolled factors plus
experimental error. Here x may be inflation index taking a particular year, say 2010, as
the base year. Here t; may be the change or deviation in the average price per kilogram
of staple vegetable items from the base year 2010, to may be the change or deviation in
the average price of the staple item rice per kilogram compared to the base year 2010, t3
may be the change or deviation in the average price of lentils per kilogram compared to
the base year 2010, and so on, and ¢, may be the change or deviation in the average price
per kilogram of beans compared to the base year 2010. Here the notation ¢;,j5 = 1,...,7 is
used to denote the given values as well as the corresponding random variables. Since we
are taking deviations from the base value we may assume, without loss of generality, that
the expected value of t; is zero or E[t;] = 0,7 = 1,...,r. We may also take the expected
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value of the error term e to be zero or Efe] = 0. Let 21 be the inflation index, z3 be the
calorie intake index per person, x3 be the general health index and so on. In all these cases
the same tq, ..., %, can act as the independent variables in a regression set up. Then in such
a case a multivariate linear regression model will have the following format:

x1 1 a1 a2 ... air| |[fi e1
X=|:1|=|:]+]: : : N B I I (1)
Tp Hp apl ap2 ... Gpr] Lfr ep

We may write this model in matrix notation as
X=p+Af+e

where A = (X\i;) is p x r, r < p and of full rank r, e is p x 1 and f is » x 1. In (1),
Nij = aij, fj = tj. Then E[X] = p+ AE[f] + Ele] = p since we have assumed that
E[f] = O (null), Ele] = O. Then when f and e are uncorrelated then the covariance
matrix in X, denoted by Cov(X) = X is the following:

£ = Cov(X) = E{(X — (X — 1’} = B{(Af + )(Af +¢))
= ACov(f)A" + Cov(e) + O = APA + ¥
Y =APAN + U (2)

where we have denoted the covariance matrices of f and e by ® > O (positive definite)
and ¥ > O respectively. In the above formulation, f is taken as a real vector random
variable. In a simple linear model usually the covariance matrix of e, namely V¥, is taken as
021 where 0 > 0 is a real scalar quantity and I is the identity matrix. In a more general
model we take U as a diagonal matrix with positive diagonal elements or we assume that
the e;’s are non-correlated and the variances of the e;’s need not be equal. In (2) we will
take ¥ to be a diagonal matrix with positive diagonal elements.

(b) A Design of Experiment model

Consider a completely randomized experiment where one set of treatment is tried. Here
the experimental plots are assumed to be fully homogeneous with respect to all known
factors of variation which may contribute towards the final observation. The observation
may be the yield of a particular variety of corn from an experimental plot. Let the set of
treatments be a set of r different fertilizers Fj, ..., F;- where the effects of these fertilizers
are denoted by aq, ..., ;. If no fertilizer is applied the yield from a test plot need not be
zero. Let py be a general effect when F} is applied so that we may take o as deviation
from the general effect 111 due to F}. Let e; be the sum total contributions coming from all
unknown or uncontrolled factors plus experimental error, if any, when F} is applied. Then
a simple linear one-way classification model for Fj is

r1 =M1 +a;+ep
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where x1 is the yield from the test plot where F7 is applied. Then corresponding to Fi, ..., F.
we have the following:

T = p1+oap+e

_ or X =pu+Af+e (3)
Tp = Mptaptep
where
1 €1 o 10 ... 0
X = ,e = f = A =
Tp ep o 00 ... 1

Here the elements of A are decided by the design itself. If the vector f is fixed then we
call the model in (3) as the fixed effect model and if f is assumed to be random then it
is called the random effect model. With one observation per cell, as stated in (3), we will
not be able to estimate the parameters and test hypotheses. We will have to replicate the
experiment. Then in the j-th replicate the observation vector will be

331]'
Xj=|:],j=1.,n%,00

Lpj
remaining the same for each replicate for the random effect model. In the regression model

in (1) also the j-th replication or repetition vector will be X;, same format as above, with
>, ®, U there remaining the same for each sample.

We will consider a general linear model of the type in (1) and (3) and do a complete
analysis in the sense of checking for the existence and uniqueness of such a model, esti-
mation of the parameters and testing of various types of hypotheses. This will be called
Factor Analysis.

2. A General Linear Model for Factor Analysis

Consider the following general linear model:

X=p+Af+e (4)
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where
(21 1 e1 bil
X=|:lp=|:]e=||.f=]]r<p
LLp Up €p Ir
A A2 A
A )\.21 )\.22 )\.27«
Dot Mz e A

with p1;’s, Aij’s, f;’s being real scalar parameters, x;,j = 1, ..., p as real scalar quantities, A
is pxr,r < p and of full rank r. When we talk about expected values, variances, covariance
etc then X, f,e are assumed to be random quantities and when we talk about estimates
then X represents a vector of observations. This convention will be used throughout
the discussion in this lecture so that multiplicity of symbols for the variables and the
corresponding observations can be avoided.

Geometrically speaking, the r columns of A are linearly independent and these r
columns can determine a r-dimensional subspace in the p-dimensional Euclidean space.
In this case the r x 1 vector f is a point in this r-subspace and this subspace is usually
called the factor space. Then if the p X r matrix A is multiplied on the right by a matrix
then this will correspond to taking a new set of coordinate axes for the factor space.

Factor Analysis is a subject dealing with identification or unique determination of a
model of the type in (4), estimation of parameters and testing of various types of hypotheses
in (4). The subject matter was originally developed in connection with mental tests.
Suppose that one test or a battery of tests is administered to an individual to evaluate the
individual’s reading ability or computational ability or mathematical ability or language
ability etc, then the test will result in a test score. There will be a component here
representing the expected score. If the test is administered among students in the 10th
grade of a school then the grand average of such test scores among all 10th graders across
the nation may be taken as the expected score. Then there will be contributions coming
from various mental factors, or certain mental faculties or a combination of several mental
faculties. All such factors may be contributing towards the observed test score. If f1,..., fr
are the contributions coming from r such mental factors then certain linear functions of
these contributions will be the final quantity entering into the observed test score when we
assume a linear model. If z; is the test score then it may be taken as a linear model in the
following form:

z1 =1+ Mifi F A efo+ o+ A fr e

where Ai1,..., A1, are the coefficients for fi,..., f., where fi,..., f, are contributions from
r factors toward x; and these factors may be called the main mental factors and the
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coefficients A11, ..., A1, may be called the factor loadings for the main factors. Here p; is
the general expected values and e; is the error part or the sum total contributions coming
from all unknown factors plus experimental error, if any. Note that the contributions
fi, ..., fr coming from main mental factors can vary from individual to individual and
hence it is appropriate to treat fi,..., f as random variables rather than as fixed unknown
quantities. These fi, ..., f, are not observable as in the case of design model in (3) whereas
in the regression type model in (1) they may be given values of observable variables called
the independent variables. Analysis of the above model may be done treating fi, ..., f,- as
fixed quantities or as random variables. If they are treated as random variables then we
can assume some joint distribution over fi,..., f,. Usually a joint normality is assumed
for fi,..., fr. Since f1, ..., fr are deviations from the general effect p; due to various main
mental faculties we may take, without loss of generality, that the expected value as null or
E[f] = O (null), and we will denote the covariance matrix in f as ® or Cov(f) = ® > O
(real positive definite). Note that the error part e; is always a random variable. Let
x1,...,Tp be the test scores on p individuals then we have the error vector ¢ = (ey, ..., €p).
Without loss of generality we may take the expected value here as null or Efe] = O (null).
For a very simple situation we may assume the covariance matrix in e as Cov(e) = o’I
where 02 > 0 is a real positive scalar quantity and I is the identity matrix. For a slightly
more general situation we may assume Cov(e) = ¥ as a real positive definite diagonal
matrix or a diagonal matrix with real positive diagonal elements. In the most general case
we may take W as a real positive definite matrix. In our model in (4), we will assume that ¥
is diagonal with positive diagonal elements. We will assume that f and e are uncorrelated.
If ¥ is the covariance matrix of X then we have the following:

Y= E[(X = p)(X — )] = E[(Af +e)(Af +e)]
=AE(ff )N + E(ee’) + 0= APN + ¥
Y =A0N + 0. (5)

We will assume ¥ > O (real positive definite) and hence A®A’ + ¥ > O.

2.1. Identification problem

Is the model in (4) a unique model or can it represent different situations or can it be
quite arbitrary? Does the model (4), as stated there, make sense as a model? Let A be
any 7 X r nonsingular matrix. Let Af = f* and AA~" = A*. Then A*f* = AA“TAf = Af.
In other words,

X=p+Af+e=pu+Af"+e. (6)

Therefore the model in (4) is not identified or not uniquely determined.

Identification problem can also be stated as follows: Given the real positive definite
p X p matrix X > O with p(p + 1)/2 distinct elements, can it be uniquely represented as
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A®PA' + ¥ where A has pr distinct elements, ® > O has r(r+1)/2 distinct elements, ¥ = a
diagonal matrix has p distinct elements? The answer is no as seen in (6). Note that a r xr
arbitrary matrix A represents r? distinct elements. From (6) we have seen that we can
impose 72 conditions on the parameters in A, ®, U. Also we can modify the question. Can
the p(p + 1)/2 distinct elements in 3 plus the r? elements in A (r? conditions) uniquely
determine all elements in A, ¥, ®? Let us see how many elements are there in total. A, ¥, &,
have a total of pr + p + 7(r + 1)/2 elements and A and ¥ have a total of 72 + p(p + 1)/2
elements. Hence the difference, denoted by 4, is the following:

r(r+1) 1

+rt = lpr+ == 4ol =Sl = (4] (7)

(p+1)

0= 5

Note that the right side in (5) is not a linear function of A, ®, and . Hence if § > 0 then
we cannot guarantee but we can anticipate existence and uniqueness, if 6 = 0 we can hope
for existence and uniqueness and if § < 0 then we can expect existence but possibly not
uniqueness. From (5) note that

L=U+APA = ¥ — U = ADA’

where A®PA’ is positive semi-definite of rank r since A is p x 7,7 < p and of full rank r
and ® > O (positive definite). Then the existence question can also be stated as follows:
Given a p X p real positive definite matrix > > O, can we find a ¥ = diagonal with positive
diagonal elements such that ¥ — W is real positive semi-definite of rank r? If a set of
parameters exist and if the model is uniquely determined then we say that the model is
identified.

If we assume ® = I then this will impose r(r+1)/2 conditions. But r? = LQH)—F@
Hence we can impose 7(r —1)/2 conditions more after imposing the condition ® = I. Note
that for ® = I, A*®A* = A*N* = AA~LA""'A’ and if this is equal to AA under & =
then this means (4’A)™! = I or A’A = I or A is an orthonormal matrix. Under the
condition ® = I the arbitrary » x r matrix A becomes an orthonormal matrix. In this
case the transformation ¥ = AA is an orthonormal transformation or a rotation of the

coordinate axes. The following r x r symmetric matrix of 7(r + 1)/2 distinct elements
A=NTTA (8)

is needed when we do estimation and tests of hypotheses and hence we can impose
r(r — 1)/2 conditions by requiring A to be diagonal with distinct diagonal elements,
A = diag(d1,...,9,),0; > 0,5 = 1,...,r. This imposes @ —
Hence for identification of the model or for the unique determination of all the parameters
in A, ®, ¥ we can impose the conditions ® = I and that A = A/U~1A is diagonal with pos-

1 ..
r = % conditions.

itive diagonal elements. These two conditions will provide w + w = 72 restrictions
on the model and the model will be identified.
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When & = I the main factors are orthogonal. If ® = a diagonal matrix (including
identity matrix) the covariances are zeros and it is an orthogonal situation and in this
case we say that the main factors are orthogonal. If ® is not diagonal (including identity
matrix) then we say that the main factors are oblique.

One can also impose 7(r — 1)/2 conditions on the p x r matrix A. Consider the first
r X r block or the leading r x r sub-matrix or the upper r x r block in the p x r matrix,
call it B. Impose the condition that this  x r block B is lower triangular. Then this will

2 @ = # conditions. Hence ® = I and the condition that this leading

result in r
r x r block B is lower triangular will guarantee r? restrictions and then the model will be
identified. One can also take a preselected r x r matrix By and then impose the condition

r(r—1)
2

B1 B is lower triangular will complete the identification of the model.

conditions. Hence ® = I and

that BB is lower triangular. This will also produce

When we put conditions on ® and ¥ we are requiring the unknown covariance matrices
to be of certain formats. Such conditions are justified. But can we put conditions on A, the
factor loadings? If we say that the fist 7 xr block B in the p x r matrix A as lower triangular
then we are saying that A\js = 0 = A\;3 = ... = Ay, or that fs,..., f, do not enter into
the model for z1, X’ = (21,22, ...,2,). Such restrictions are justified if we can design the
experiment in such a way that z1 depends on fi alone and not on fo, ..., f,-. In psychological
tests it is possible to design the test in such a way that there are contributions from certain
main factors only. Hence a triangular format that in x; there are no contributions from
fo, ..., fr or the corresponding factor loadings Ais, ..., A1, are zeros, or, in general, in x;
there are no contributions from f;11, ..., fr, or the factor loading A; ;+1, ..., A are zeros for
i =1,...,r—11is a feasible proposition and hence such a condition is justified. Suppose that
the first r tests are designed in such a way that z; has only contributions from fi, ..., f;
and from no other factor or z; = pu; + A f1 + ... + Miifi + e;,4 = 1,...,r, this is also a
feasible proposition. We can also measure the contribution from f; in A; units or we can

take A\;; = 1. Then by taking B = I, we can impose 72

conditions without requiring
® = . This means that the first r tests are specifically designed so that z; has one unit
contribution from f; only, x2 has one unit contribution from fo only etc and x, has one
unit contribution from f, only. If B is taken as diagonal then there are factor loadings
A1, A22, ..., A Tespectively but x; has contribution from f; only for ¢ = 1,...,r. Hence the

following are some model identification conditions:

1): ® = I and A'U~1A is diagonal with distinct diagonal elements;

2): ® = I and the leading r x  sub-matrix B in the p x r matrix A is triangular;
): @

3 = I and BB is lower triangular where By is a preselected matrix;

(
(
(
(4): The leading  x r sub-matrix B in the p x r matrix A is an identity matrix.

Observe that when 7 = p then the condition (4) above will correspond to the design model
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considered in (3).

2.2. Scaling or units of measurements

Any analysis based on a covariance matrix ¥ has the basic defect that the covariances
depend on the units of measurements of the individual variables. If the units are changed
then the covariances change. If y; and y; are two real scalar random variables with variances
o;; and o0j; and covariance between them o;; then a way of getting rid of the effect of
scaling or changes in units of measurements is to consider the variables z; = y;/./0;; and
zj = y;//0jj so that Cov(z;, z;) = ri; = correlation between y; and y; and the correlation

is free of the units of measurements. Let Y’ = (y1, ..., yp) and let D = diag(\/%, cey \/(%)
then consider Z = DY. We note that Cov(Y) = ¥ = Cov(Z) = DXD = R = the

correlation matrix in Y.

In psychological testing situation or in the model in (4), when a test score z; is mul-
tiplied by a scalar quantity c; then the factor loadings Aji, ..., Aj are multiplied by c;,
the error e; is multiplied by c; and the general effect p; is multiplied by ¢; or cjz; =
cipj + (A fi + .. + Njr fr) + ¢jej. Let Cov(zy, z5) = 045, Cov(X) = X, X' = (21, ..., zp)

and let D = diag( ;H s \/(%) Consider the model
DX = Dy + DAf + De = DSD = DA®A'D + DUD. (9)

If X* = DX, u* = Du,A* = DA,e* = De then we have the following model and the
resulting covariance matrix:

X* = p* + A f +e* = ¥ = Cov(X*) = A*Cov(f)A" + T*
= DYD = DA®A'D + DV D
= R=A"OAN" + U~ (10)

where R = (74;) is the correlation matrix in X. One interesting point to be noted is that
the identification condition ® = I and A”*¥*~1A* = diagonal becomes the following: ® = I
and A*U*~'A* = A’DD'W—1D"1DA = A'U 1A = diagonal or A’U 1A is invariant under
scaling transformation on the model or under X* = DX, ¥* = DUD.

3. Maximum Likelihood Estimators for the Parameters

From the model X = p+ Af + e in (4) when we say we have a simple random sample
of size n the meaning is that we are considering independently and identically distributed
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(iid) X;,j =1,...,n where

T €1j

x9; €25
Xj=p+Aftenj=1.nmX=| |.e=]|" (11)

Lpj Cpj

and iid. Let X; and e; be independently normally distributed, that is e; ~ N,(O, ¥) and
X; ~ Np(p, %), = APA' + ¥ where @ > O,¥ > O,% > O where ¥ is diagonal with
positive diagonal elements. Then the likelihood function is the following:

o e
b |2|
ée_% ?zl(Xj_“)lzil(Xj_#). <12)

np n

(2m) ¥ |23

The sample matrix is denoted by the bold-faced X = (X1,...,X;,). Let J be the n x 1
vector of unities, J' = (1,1,...,1). Then

Tl X12 ... Tip
ro1 I22 ... X9n
X=(X..Xn)=1.
xpl xpg . ZL'pn
1 Ty
. w21 (@1) 3_32
= -XJ = : = | =X
n .
1 :
E(Z;‘lzl Tp;) 7
P

where X is the sample average vector or the sample mean vector. Let the bold-faced X be
the p x n matrix X = (X, X, ..., X). Then

(X -X)(X-X) = (i), sij = Z(:czk )Tk — T5) (13)

where S is the sample sum of products matrix or the “corrected” sample sum of products
matrix. Note that

%= 1xJ
n
_ _ _ 1
=X =(X,..X)=X(=JJ)
n

- 1
=X -X=X(I--JJ).
n
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Then 1 ] ]
S:X(I——JJ/)(I—fJJ’)/X/:X(I—7JJ’)X’. (14)
n n n

Since (X; — M)’E_l(Xj — ) is a real scalar quantity we have the following:
n n
DX — )TN =) =Y te(X — ) ST — )
j=1 j=1

= > ST (X - (X — )]
j=1

= tr[x? zn:(Xj ~ X+ X - p)(X; - X+ X —p)

=[S ) (X~ X)(X; - X)]
J=1

F i[5 — ) (K — )]
=tr(7LS) + (X — p)'SHX — p). (15)

Hence

L = (2n) F || 3 5@ 1) (X )= (X)) (16)

Differentiating (16) with respect to p and equating to a null vector and then solving we
have the estimator for u, denoted by i, as fi = X. Then In L at p = X is the following:

1
InL = —% In(27) — gln 2] - 5tr(Z71)

= "Pinar) 2 n|ABA + 0] - %tr[(A(I)A’ +w)ls), (17)

3.1. Maximum likelihood estimators under an identification condition

One of the conditions for identification of the model is ® = I and A’U~!A = a diagonal
matrix with positive diagonal elements. We will examine the maximum likelihood esti-
mators (MLE)/maximum likelihood estimates (MLE) under this identification condition.
Then from (17)

1
InL = —% In(27) — gln AN+ 0| - Su[(AN +0) 'S, (18)

By opening up the following determinant in two different ways we have the following
relationship:
U —A

ML = |U| [T+ ANTIA| = [T 4+ AN (19)
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Hence
In|AA + U] =In|¥| +In |+ A TA|

p r
= Ingy;+ > In(1+4;),
j=1 j=1

A = NUA = diag(6y, 62, ..., 6, (20)

where ;5,7 = 1,...,p are the diagonal elements in the diagonal matrix ¥, and the iden-
tification condition is that ® = I and A'U~!A = A = diag(dy,...,d,). Hence if we can
write tr(X71S) = tr[(AA + ¥)~1S] in terms of 15,5 = 1,...,p and &;,j = 1,...,r then the
likelihood equation can be evaluated directly from (18) and (20) and the estimators can
be obtained. In this connection we can obtain the following result:

Theorem 3.1. For AN + U nonsingular, which here means real positive definite, the
inverse is given by

(AN + )L =071 o IAA 4+ 1)7TAT ! (21)

where the A is given in (20).

It is easily verified that pre and post multiplications of =1 — W=1A(A + 1)~ 'A P!
by AA' 4+ ¥ give the identity matrix Ip,.

3.2. Simplifications of || and tr(X719)

From (20)

12| = |AN + 0| = |T] |[NT A + T

= W11+ A= {]TwiHIT +d))

=1 j=1

Then observe the following: In A(A +I)~! = Adiag(
multiplied by ﬁ, j=1,...,r and

ﬁ, e H_%) the j-th column of A is

1
AA+D)TIN =D mAjA;.
j=1 J



Factor Analysis 13

where A; is the j-th column of A and the §;’s are given in (20). Then

P r
In|S) =) e+ > In(l+4)) (22)
j=1 j=1

tr(X71S) = tr[(AA 4+ U)7LS] = tr[(UT19)] — tr[ T TA(A + 1) AT LS
_ ~ 1 g —1 crare—
= tr(¥ 15)—;H5jtr(AjAj(\I/ 1gu—1)

1
_ -1 rp-lap—1A
=tr(T19) — ; mtr(/\j(\ﬂ SUHA;)

~ 1
=tr(P9) = Y — A (UTISUTHA 2

r( S) ;14—5;‘ J( S A (23)
where A; is the j-th column of A and by using the property tr(AB) = tr(BA) and then
observing that A;-(\Il_lS\I/_l)Aj is a quadratic form.

3.3. Special case ¥ = o],

Let ¥ = 02 where o2 is a real scalar. Then ¥=1 = 6721, = 01, where § = 0~2. Then
the log likelihood function reduces to the following;:
np np n
InL=—="In@2m) + 5 Inf — 5 ;111(1 +6;)

—Qt (S)+£2T:LA’SA
2t 2 1+

where 1+ d; = 1+ 0A’A; with A; being the j-th column of A. Consider the equation

0
%1HL—0:>

o [ i
6 ”; rron, )

r A’SA
—_— 2 pu—
+2021+9A, Z 1+9A,A)2 A;SA; = 0. (24)
For a specific j, consider
0
20 2 28A; 2 NSA;
n_ 204, +97L_9717](29)Aj20. (25)

C2140MA; T 2 140MA; 2 [T+ 0NA
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Cancel one 6 and multiply on the left by [1 + GA;A]}Q. Then
—n(1+ 0NN A, + 0[(1 + OAGA)SA;] — 6*(A;SAHA; = O. (26)
Pre-multiply (26) by A’ to obtain the following:
—n(1+ GA;-AJ')AS-A]- +0[(1+ GA;Aj)A}SAj — 92(A9SAj)A;-Aj =0 (27)
This simplifies to the following;:
H[A;-SAj — n(A;-A]»)2] = nA;Aj (28)
which gives, for A7SA; # n(A;-A]-)Q,

T NSA; - n(NA2T T

0 Loyt (29)

Substituting this € value from (29) to (26) we have the following, observing that

1+ 0A A A3SA;
7 A;SAJ — ’I’L(A;AJ)Z
ASA; n(ALA; A-SA;
iV : J/ 2j+ 7 (]])/ 2 LA7 5 ]/ Q]SAj
A]-SAJ‘ — ’I’L(A]AJ) AjSAj — ’I’L(A]A]) AjSAj — n(A]AJ)
(nA;A]‘)Q /
_ [A;SA]- — n(A;Aj)2]2 (AjSAj)Aj =0.
This simplifies to the following:
—n[A}SA] — n(A;A])Q]A] + n(A;A])SAJ — HQ(A;AJ')QA]' = O
which gives
A;SAJ-
S — A;Aj INAj=0=
PR 30
CONA T (30)

!

. ALSA; . . . .
This means that ﬁ is an eigenvalue of S and A; is an eigenvector of S. There are p
77

eigenvalues and the corresponding p eigenvectors for S. Note that for f\j as a column of A
there are only r of them but Aj as an eigenvector of S there are p > r of them. If n; is an
eigenvalue of S then

sh, = A 8554
i =l == =
N A,
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Take the largest r eigenvalues of S. Compute the corresponding eigenvectors f\j, j=1,..r
Then these give the estimates of the factor loadings. Then the sum of the eigenvalues is
the trace of S and hence we have the following result:

Theorem 3.2. The sum of all eigenvalues of S from equation (30), including the estimates
of the r factor loadings Aj ’s 1is given by

i i _ tr(S). (31)

Hence, compute the eigenvalues and the corresponding eigenvectors of the sample sum
of products matrix S. The estimates for the factor loadings, denoted by Aj, are available
from the eigenvectors Aj’s of S. Take the first r largest eigenvalues of S and then compute
the corresponding eigenvectors to obtain estimates for all the factor loadings. Then the
procedure is also connected to the Principal Components Analysis. The estimates of the
variances of the principal components will be /A\;S/A\j / A;Aj forj=1,...r

Verification

Does the 6 value in (29) satisfy the likelihood equation (24)? Since 6 is estimated
through A; for each j = 1,...,7 we may replace 6 in (24) as §; and insert inside the
summation symbol. Then equation (24) will be the following:

n;% n;l—l—@'A’A' —tr(S)

ALSA, Aj(A/SA,)
+2ZGJ1 N Z J 1+9A’ 2= (82)

Now, substituting the value of #; from (29) into (24), the left side of (24) reduces to the
following;:

[A/SA; — n(A A;)?] ALA; )
nz WAA nz A5, [ALSA; — n(A)jA;)?] — tr(S)
+2Z NN — Z Ash; (nAjA;)?

" A58, ¢

A’ SA;

_ZA’ —tr(S) =0

because of Theorem 3.2. Hence equation (32) holds for the # value from (29) and A; value
from (26).
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Since the basic estimating equation for 6 is coming from (28) a
O[A}SA; — n(AjA;)?] = nAjA,;

we may sum up over j on both sides and then we have the combined estimate for 6 as
follows:
. nS_ ALA; 1
LYY L. i B (33)
Zj:l[AjSAj - n(AjAj) ] o

or the estimate of o2 is the reciprocal of the estimate of 6.
Maximum value of the exponent

We have the estimate 6 of § coming from (29) at the estimated value Aj of A; for
each j. This Aj is an eigenvector of S coming from (30). The exponent of the likelihood
function is —3tr(X71S) and our ¥ = A®A’ + ¥ and our identification conditions are
® = I, and A’ U~!A = a diagonal matrix with positive diagonal elements. Under these

conditions and for the special case ¥ = 02I,,072 = 0 we have seen that the exponent
A/ SA,

in the log-likelihood function reduces to —16tr(S) + $6° > i1 m. Now, consider
N SA;
Otr(S) — 37 GQW d say . Since an estimate of § is available from each j we may

replace 6 by 0; whenever it is convenient. Then

T /SA

Substituting an expression for 1 + HA;»A]- from (29) we have the following:

AGSA;

2]14—0/\’ ZnAA and ¢ = @[tr(S fnZA’

ALSA,
From Theorem 3.2, sum of the eigenvalues of S is ). j A, X, and substituting this we have

A, SA A.SA; — n(AA;)?

_ J J
:925 :n21:np
J J

which establishes the result that the exponential part simplifies to e 7. Thus, the esti-
mates comi